
www.allitebooks.com

http://www.allitebooks.org

Bootstrap for ASP.NET MVC

Incorporate Bootstrap into your ASP.NET MVC

projects and make your websites more user friendly

and dynamic

Pieter van der Westhuizen

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Bootstrap for ASP.NET MVC

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1130814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-728-3

www.packtpub.com

Cover image by Bartosz Chucherko (chucherko@gmx.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Pieter van der Westhuizen

Reviewers

Jaco Fouché

Tinus Smit

Stephan Swart

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Rebecca Youé

Content Development Editor

Priyanka S

Technical Editor

Mrunal Chavan

Copy Editors

Janbal Dharmaraj

Deepa Nambiar

Karuna Narayanan

Alida Paiva

Project Coordinator

Kartik Vedam

Proofreaders

Bridget Braund

Paul Hindle

Indexer

Hemangini Bari

Production Coordinators

Conidon Miranda

Nilesh R. Mohite

Nitesh Thakur

Cover Work

Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Pieter van der Westhuizen is a freelance software and web developer
specializing in ASP.NET MVC, web technologies, and MS Ofice development.
He started his career in web development using classic ASP, Visual InterDev,
HoTMetaL, and FrontPage.

Pieter has over 15 years of experience in the IT industry and is also one of the
people fortunate enough to have his hobby become his full-time profession.
He is also a technology evangelist for Add-in Express (www.add-in-express.com),
which focuses on tools for Microsoft Ofice integration.

This is Pieter's irst foray into book writing although he has been blogging since 2007
on his personal blog at www.mythicalmanmoth.com and on the Add-in Express blog
since 2010. He lives with his wife and Harrier (the dog, not the bird or Jump Jet)
in Pretoria, South Africa.

www.allitebooks.com

www.add-in-express.com
www.mythicalmanmoth.com
http://www.allitebooks.org

Acknowledgments

To everyone who contributed to this book, thank you! A big thanks to the team at
Packt Publishing, especially Rebecca, Priyanka, Kartik, and Aboli, for their guidance,
advice, and professionalism.

Thanks to my three technical reviewers, Jaco, Tinus, and Stephan, for patiently
reading each chapter, reviewing each line of code, and contributing suggestions.
You helped shape this book into what it is.

I'd like to express my greatest love and gratitude towards my wife, Andrea, for all
her support, impromptu editing sessions, being a soundboard for brainstorming
sessions, and the general motivational pep talks during the writing of this book.

To my parents—even though they were not exactly sure what this book was
about—thank you for all your support and for allowing me to tinker with the
family computer from an early age.

I'd also like to extend a special thank you to Eugene Starostin from Add-in Express,
who allowed me to blog about an idea that subsequently turned into this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jaco Fouché has been involved with software development for over 22 years and is
currently a database architect and software developer at SilverBridge in Pretoria, South
Africa. He holds a B.Sc degree in Computer Science from the University of Pretoria.
He has worked with different technologies but specializes in Microsoft technologies
with speciic emphasis on ASP.NET MVC and Microsoft SQL Server.

With a number of years in the coding ield, Tinus Smit has a passion for good,
clean code and solving problems. A C# .NET developer at his core, he has also
gained extensive knowledge of Microsoft SQL, Microsoft Dynamics CRM, JavaScript,
Entity Framework, and MVC.

The CRM experience is not limited to clicking a few buttons and dragging ields
around in a form. He has had a hand in solving complex business problems with
CRM's worklow and plugin engines, often integrating with other systems in the
process. Over the years, he has learned exactly where CRM its best, what the
product can do, where and how to extend it, and the best practices thereof.

However, in the end, these are merely tools to solve problems. In Johannesburg,
South Africa, he inds himself working tirelessly on projects for many companies
over the years (from small to enterprise-sized), using these tools and experience.
He sees every new challenge as an opportunity to learn something new and inds
ways to teach what he has learned. Armed with a database and Visual Studio,
he uses pragmatism and logic to help users reach their goal.

He can be reached on Twitter at @CodingWithTinus or on his blog at
http://codingwithtinus.wordpress.com.

www.allitebooks.com

http://codingwithtinus.wordpress.com
http://www.allitebooks.org

Stephan Swart has been interested in software development for the last 30 years.
He has used a variety of technologies, programming languages, and platforms.
Starting as a Cobol developer, embracing most of the latest technologies that were
released at the time, he has been involved in .NET development since the very irst
release of .NET. In the last few years, he has lived and worked as a senior .NET
developer using Web, Windows, and mobile technologies for a number of different
companies in Europe, Canada, and South Africa. Among the technologies he used
recently are ASP.NET MVC, jQuery, Knockout, C#, VB .NET, WPF, Silverlight,
MVVM, Xamarin, and many more.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub iles available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Getting Started with ASP.NET MVC and Bootstrap 7
The Bootstrap distribution 8

Bootstrap style sheets (the css folder) 8

Bootstrap fonts (the fonts folder) 8

Bootstrap JavaScript iles (the js folder) 9
The Bootstrap folder structure 9

Using Bootstrap with a site created with the standard Visual
Studio project template 10

Examining the default MVC project layout 12
The Content folder 13

The fonts folder 13

The Scripts folder 14

Creating an empty ASP.NET MVC site and adding Bootstrap manually 14
Adding the Bootstrap style sheets 15

Adding the Bootstrap fonts 16

Adding the Bootstrap JavaScript iles 16
Creating the site Layout ile 17
Creating a home controller with a Bootstrap-themed view 19
Adding Bootstrap iles using NuGet 21

Adding the Bootstrap NuGet package using the dialog 21

Adding the Bootstrap NuGet package using the Package

Manager Console 22

Improving your site performance with bundling and miniication 23
Adding bundling to your Bootstrap project 24

Including bundles in your ASP.NET layout 25

Testing bundling and miniication 26
Summary 27

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Using Bootstrap CSS and HTML Elements 29
The Bootstrap grid system 30

Bootstrap grid options 30

Bootstrap HTML elements 31
Bootstrap tables 32

Styling Bootstrap tables 36

Bootstrap contextual table classes 37

Bootstrap buttons 39
Form layout and elements 41

Horizontal forms 41

Vertical/Basic forms 42

Inline forms 43

Bootstrap validation styles 44
Creating editor templates for primitive types 47

Creating editor templates for nonprimitive types 48

Bootstrap image classes 50
Summary 52

Chapter 3: Using Bootstrap Components 53
The Bootstrap navigation bar 53
List groups 56
Badges 57
The media object 57
Page headers 59
Breadcrumb 60
Pagination 60
Input groups 64
Button dropdowns 66
Alerts 67
Progress bars 69

The basic progress bar 69
Contextual progress bars 70

Striped and animated progress bars 71

Dynamically updating the progress bar's percentage 71

Summary 74
Chapter 4: Using Bootstrap JavaScript Plugins 75

Data attributes versus the programmatic API 76
Cascading dropdowns 77
Modal dialogs 80

Table of Contents

[iii]

Tabs 83
Tooltips 85
Popovers 87
The accordion component 88
The carousel component 90
Summary 92

Chapter 5: Creating ASP.NET MVC Bootstrap Helpers 93
Built-in HTML helpers 93
Creating a custom helper 94

Using a helper in a view 95
Creating helpers using static methods 96

Using the static method helper in a view 98
Creating helpers using extension methods 98

Using the extension method helper in a view 99
Creating luent HTML helpers 99

Using the luent HTML helper in a view 103
Creating self-closing helpers 104

Using the self-closing helper in a view 105

Summary 106
Chapter 6: Creating T4 Templates to Scaffold Bootstrap Views 107

An overview of scaffolding 107
T4 templates 108

T4 tools 109
The T4 syntax 109

Customizing the generated code for controllers 110

Customizing the generated code for views 114
Creating a custom scaffolder extension 118
Summary 127

Chapter 7: Converting a Bootstrap HTML Template
into a Usable ASP.NET MVC Project 129

Working with prebuilt HTML templates 130
Creating the ASP.NET MVC project 132
Creating the master layout 133
Adding a view for the home controller 135
Adding the menu plugin library 137
Adding different page views 138
Adding charts to your views 141
Summary 144

Table of Contents

[iv]

Chapter 8: Using the jQuery DataTables Plugin with Bootstrap 145
jQuery DataTables 145
Adding DataTables to your ASP.NET MVC project 146

Using the DataTables NuGet package 146

Using the CDN 147

Adding Bootstrap styling to DataTables 147

Loading and displaying data in jQuery DataTables 148
DataTables extensions 153

The ColReorder extension 153

The ColVis extension 154

The TableTools extension 156

Summary 158
Chapter 9: Making Things Easier with the
TwitterBootstrapMVC Library 159

The TwitterBootstrapMVC library 159
Including TwitterBootstrapMVC in your project 160

Adding TwitterBootstrapMVC using NuGet 160

Add TwitterBootstrapMVC using the .dll ile 161
Using the TwitterBootstrapMVC helpers 161

Forms and inputs 162
Inputs 162

Forms 163

Buttons and links 166

Accordions and panels 168

Tabs and modals 169
Summary 172

Appendix: Bootstrap Resources 173
Themes 173
Add-ons 174
Editors and generators 174

Index 177

Preface
Twitter Bootstrap, simply known as Bootstrap, is the leading open source
CSS/HTML and JavaScript framework on the Internet. Shortly after its launch,
it became the most popular project on GitHub. It became so popular that Microsoft
announced at their Build 2013 conference that all the web app project templates in
Visual Studio 2013 will use Twitter Bootstrap by default.

One of the main reasons why Bootstrap is so prevalent is that it allows developers,
many of whom are notoriously bad at user interface design, to build aesthetically
pleasant-looking sites with a relatively small amount of effort. Bootstrap also offers
a rich ecosystem of free and commercial templates, third-party components, tools,
and an active and helpful community.

Using CSS frameworks and Bootstrap in particular with ASP.NET MVC is a
natural it. Bootstrap takes care of the typography, form layouts, and user interface
components, and allows the developer to focus on what they are good at, that is,
writing code. This aspect is particularly valuable for smaller development companies
that do not necessarily have an in-house designer. Bootstrap Version 3 introduced
a mobile-irst approach, meaning all sites built with Bootstrap will be automatically
responsive and optimized to be displayed on devices with smaller screens.

What this book covers
Bootstrap for ASP.NET MVC walks you through the process of creating a fully
functioning ASP.NET MVC website, using Bootstrap for its layout and user interface.

Chapter 1, Getting Started with ASP.NET MVC and Bootstrap, focuses on getting started
with Bootstrap, from where to get the iles, how to include them in your project, and
takes a closer look at the default ASP.NET MVC project template. We'll also look at
the beneits of bundling and miniication of CSS and JavaScript.

Preface

[2]

Chapter 2, Using Bootstrap CSS and HTML Elements, examines the various Bootstrap
CSS and HTML elements, how to include them in your ASP.NET MVC project,
and how to conigure and use their various options.

Chapter 3, Using Bootstrap Components, will be building on what we've learned
in Chapter 2, Using Bootstrap CSS and HTML Elements. This chapter scrutinizes
the different components such as navigation, alerts, progress bars, button groups,
and badges.

Chapter 4, Using Bootstrap JavaScript Plugins, illustrates the use of Bootstrap's
JavaScript plugins. We will be experimenting with modal dialogs, contextual
dropdowns, tooltips, buttons, and UI components such as accordion and carousel.

Chapter 5, Creating ASP.NET MVC Bootstrap Helpers, guides you through the process
of reducing the amount of HTML needed to generate Bootstrap elements by creating
ASP.NET MVC helper methods and classes.

Chapter 6, Creating T4 Templates to Scaffold Bootstrap Views, moves on to the more
advanced topic of creating T4 templates in order to generate Bootstrap-themed
scaffolded views.

Chapter 7, Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project,
shows how we can convert an open source HTML template and make it ready to be
used with ASP.NET MVC.

Chapter 8, Using the jQuery DataTables Plugin with Bootstrap, demonstrates how to use
the powerful jQuery DataTables plugin with Bootstrap and ASP.NET in order to
show tabular data.

Chapter 9, Making Things Easier with the TwitterBootstrapMVC Library, examines the
TwitterBootstrapMVC library, which contains a host of prebuilt HTML helpers to
make the inclusion of Bootstrap components in ASP.NET MVC easier.

Appendix, Bootstrap Resources, provides a list of free Bootstrap resources, themes,
and tools.

What you need for this book
To get the most out of this book, you'll need Visual Studio 2013 and a modern
browser. All examples have been tested with Visual Studio 2013, Google Chrome,
and Mozilla Firefox. This book will be beneicial to those with experience ranging
from the entry level to the advanced level in ASP.NET MVC development, as well
as limited experience in Bootstrap.

Preface

[3]

Who this book is for
This book is for ASP.NET MVC developers who would like to know how to
incorporate Bootstrap into their projects. ASP.NET MVC developers could also
beneit from the chapters that cover advanced topics, such as creating helpers and
using the jQuery DataTables plugin. If you have limited experience in ASP.NET
MVC and Bootstrap, this book can serve as a primer to these technologies.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We would only need to include the bootstrap.css ile into our project for the
Bootstrap styles to be applied to our pages."

A block of code is set as follows:

<system.web>

 <compilation debug="true" targetFramework="4.5" />

 <httpRuntime targetFramework="4.5" />

</system.web>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.0/
jquery.min.js"></script>

<script src="/bootstrap/js?v=raqa-So7giLQpXYq5LQiW8D-
yNoxOAJewB8VXtgFHfE1"></script>

</body>

</html>

Any command-line input or output is written as follows:

Install-Package jquery.datatables

New terms and important words are shown in bold. Words that you see
on the screen, in menus or dialog boxes for example, appear in the text like
this: "Right-click on the Controller folder in the Solution Explorer section
and navigate to Add | Controller…."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with ASP.NET

MVC and Bootstrap
As developers, we can ind it dificult to create great-looking user interfaces from
scratch when using HTML and CSS. This is especially hard when developers have
years of developing Windows Forms applications experience. Microsoft introduced
Web Forms to abstract the complexities of building websites away for Windows
Forms developers and to ease the switch from Windows Forms to the Web, this in
turn made it very hard for Web Forms developers to switch to ASP.NET MVC and
even harder for Windows Forms developers.

Twitter Bootstrap is a set of stylized components, plugins, and a layout grid that
takes care of the heavy lifting. Microsoft included Bootstrap in all ASP.NET MVC
project templates since 2013. In the sample project, we'll start by creating a new
ASP.NET MVC project either by using the standard Visual Studio MVC project
template or by starting with an empty MVC project and adding the necessary iles
as we need them.

In this chapter, we will cover the following topics:

• The iles included in the Bootstrap distribution
• How to create an ASP.NET MVC site using the standard Visual Studio

project template and Bootstrap
• How to create an empty ASP.NET MVC site and add the Bootstrap

iles manually
• How to create a Layout ile that references the Bootstrap iles
• Adding Bootstrap iles using NuGet
• Improving site performance with bundling and miniication

www.allitebooks.com

http://www.allitebooks.org

Getting Started with ASP.NET MVC and Bootstrap

[8]

The Bootstrap distribution
Before we can get started with Bootstrap, we irst need to download its source iles.
At the time of writing this book, Bootstrap was at Version 3.1.1. You can download
the latest version from http://getbootstrap.com.

The zip archive contains the following three folders:

• css

• fonts

• js

Bootstrap style sheets (the css folder)
Do not be alarmed with the amount of iles inside the css folder. This folder contains
four .css iles and two .map iles. We would only need to include the bootstrap.css
ile in our project for the Bootstrap styles to be applied to our pages. The
bootstrap.min.css ile is simply a miniied version of the aforementioned ile.

The .map iles can be ignored for the project we'll be creating. These iles are used
as a type of debug symbol (similar to the .pdb iles in Visual Studio), which allow
developers to live edit their preprocessor source iles—something which is beyond
the scope of this book.

Bootstrap fonts (the fonts folder)
Bootstrap uses Font Awesome to display various icons and glyphs in Bootstrap sites.
Font Awesome was designed speciically for Bootstrap and the fonts folder contains
the following four different formats of the font iles:

• Embedded OpenType (glyphicons-halflings-regular.eot)

• Scalable Vector Graphics (glyphicons-halflings-regular.svg)

• TrueType font (glyphicons-halflings-regular.ttf)

• Web Open Font Format (glyphicons-halflings-regular.woff)

It is a good idea to include all these iles in your web project as this will enable your
site to display the fonts correctly in different browsers.

The EOT font format is required for Internet Explorer 9 and newer.
TTF is the traditional old font format and WOFF is a compressed
form of TTF fonts. If you only need to support Internet Explorer 8
and later, iOS 4 and higher, as well as Android, you will only need to
include the WOFF font.

http://getbootstrap.com

Chapter 1

[9]

Bootstrap JavaScript iles (the js folder)
The js folder contains two iles. All the Bootstrap plugins are contained in the
bootstrap.js ile. The bootstrap.min.js ile is simply a miniied version of the
aforementioned ile. Before including the ile in your project, make sure that you
have a reference to the jQuery library because all Bootstrap plugins require jQuery.

The default project template automatically adds the jQuery library to your project
and creates a bundle for it. The jQuery bundle will be included in your pages if you
have the following line of code inside your view:

@Scripts.Render("~/bundles/jquery")

Downloading the example code

You can download the example code iles for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the iles e-mailed
directly to you.

The Bootstrap folder structure
The unzipped folder structure for Bootstrap will look something like the
following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with ASP.NET MVC and Bootstrap

[10]

Using Bootstrap with a site created
with the standard Visual Studio

project template
From Visual Studio 2013, when creating an ASP.NET project, you only have one
project template to choose from, that is, the ASP.NET Web Application project
template, as shown in the following screenshot:

Chapter 1

[11]

In the New ASP.NET Project dialog, you have a choice to select the type of ASP.NET
web application you would like to create. To create an ASP.NET MVC web app that
uses Bootstrap for its styling and layout, select the MVC template. You'll notice that
the MVC checkbox is automatically selected, as shown in the following screenshot:

Click on the OK button to inish the creation of the MVC project in Visual Studio.
You'll notice that the project template automatically adds a number of NuGet
packages to your project, including the Bootstrap NuGet package.

Getting Started with ASP.NET MVC and Bootstrap

[12]

Examining the default MVC project layout
The default project template adds all the necessary Bootstrap iles we discussed
earlier, although it does not use the same folder naming convention as the
default Bootstrap distribution. The default project layout will look similar
to the following screenshot:

Chapter 1

[13]

The Content folder
The Content folder contains both the bootstrap.css and bootstrap.min.css iles
as well as a style sheet called Site.css. This ile is used to apply any additional
styling on top of the default styles provided by Bootstrap, and it is also used to
specify the styles to use for the jQuery validation plugin required by ASP.NET MVC
for form validation. For example, the following CSS highlights any input element
with a reddish color and draws a border around the element if the validation for that
ield failed:

.field-validation-error {

 color: #b94a48;

}

.field-validation-valid {

 display: none;

}

input.input-validation-error {

 border: 1px solid #b94a48;

}

input[type="checkbox"].input-validation-error {

 border: 0 none;

}

.validation-summary-errors {

 color: #b94a48;

}

.validation-summary-valid {

 display: none;

}

The fonts folder
The fonts folder contains the Glyphicon font in all the necessary formats.

Getting Started with ASP.NET MVC and Bootstrap

[14]

The Scripts folder
The Scripts folder contains a number of scripts. Most notably for this book, it
contains the bootstrap.js and bootstrap.min.js JavaScript iles. The default
ASP.NET MVC project template also adds both miniied and normal iles for the
following JavaScript libraries and plugins:

• jQuery
• jQuery validation plugin
• jQuery and jQuery validation support library for unobtrusive validation
• Modernizr

• Respond JS

Visual Studio enables intelliSense for jQuery, Bootstrap, and Modernizr as well as
responds by adding the _reference.js ile to the Scripts folder. This is a very
useful feature when working with JavaScript and well worth using when working
with the Bootstrap components.

Most of these libraries and iles are beyond the scope of this book, but we will touch
on some of them as we progress.

Creating an empty ASP.NET MVC site and

adding Bootstrap manually
The default project layout is a good start for any ASP.NET MVC project, but for
the sample project we'll be building throughout this book, we'll create an empty
ASP.NET MVC site and add the necessary iles manually. This is done by
performing the following steps:

1. Start by creating a new ASP.NET web application project in Visual Studio
and name the project Northwind.Web.

2. This time, select the Empty template in the New ASP.NET Project
dialog and make sure the MVC checkbox is selected, as shown in the
following screenshot:

Chapter 1

[15]

3. An empty project layout will be created for you and you'll notice that we do
not have the Content, Fonts, or Scripts folder—we'll add them ourselves!

Adding the Bootstrap style sheets
To add the Bootstrap style sheet iles to your project, complete the following steps:

1. Create a new folder by right-clicking on the new project's name inside
Visual Studio's Solution Explorer and navigating to Add | New Folder,
name the new folder css.

2. Next, right-click on the newly created css folder and navigate to
Add | Existing Item… from the context menu.

3. Browse to the folder in which you've extracted the Bootstrap distribution
iles and select the bootstrap.css ile that you can locate in the css folder.

Getting Started with ASP.NET MVC and Bootstrap

[16]

Adding the Bootstrap fonts
Add the required Bootstrap fonts by performing the following steps:

1. As with the style sheets, create a new folder called fonts.

2. Next, browse to the location to where you've extracted the Bootstrap
download and add all the iles from the fonts folder to your fonts folder
in Visual Studio.

3. There should be four iles in total, each named glyphicons-halflings-
regular but with the following different ile extensions:

 ° .eot

 ° .svg

 ° .ttf

 ° .woff

Adding the Bootstrap JavaScript iles
The inal Bootstrap ile we'll need is bootstrap.js. To add it, perform the
following steps:

1. Before adding the bootstrap.js ile to your Visual Studio project,
create a new folder called js.

2. Add the bootstrap.js ile to this folder.
3. Once completed, the project layout should look similar to the

following screenshot in the Visual Studio's Solution Explorer:

Chapter 1

[17]

Creating the site Layout ile
To maintain a persistent look across our site's pages, we'll use a Layout ile. This
layout ile will use the basic Bootstrap HTML template at irst and we'll build onto it
as we progress throughout the book. To create this ile, complete the following steps:

1. Create a new Layout ile by right-clicking on the Views folder in the Visual
Studio's Solution Explorer and navigate to Add | New Folder. Name the
new folder Shared.

2. Next, right-click on the Shared folder and navigate to Add | New Item….
Select the MVC 5 Layout Page (Razor) item template, name the new item
_Layout.cshtml and click on Add, as shown in the following screenshot:

3. After the new ile is added to you project, open it and replace its contents
with the following HTML markup:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

www.allitebooks.com

http://www.allitebooks.org

Getting Started with ASP.NET MVC and Bootstrap

[18]

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <title>@ViewBag.Title</title>

 <!-- Bootstrap -->

 <link href="@Url.Content("~/css/bootstrap.css")"
 rel="stylesheet">

 <!--[if lt IE 9]>

 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
 html5shiv.js"></script>

 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
 respond.min.js"></script>

 <![endif]-->

</head>

<body>

 @RenderBody()

 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/1.11.0/jquery.min.js"></script>

 <script src="@Url.Content("~/js/bootstrap.js")"></script>

</body>

</html>

In the preceding markup, we set the viewport's width property to the
device's width and the initial-scale value to 1. This will cause our
site to adapt to the screen size of the device the user is viewing it from.

Next, we reference the Bootstrap style sheet by using the Url.Content helper
method. This helper method converts a virtual or relative path to an absolute
path, making sure that when the web page is opened, the style sheet will be
loaded correctly.

We then check if the browser accessing the site is Internet Explorer 9 or
earlier; if it is, we include the HTML5Shiv workaround that enables styling of
HTML5 elements in Internet Explorer Version 9 and earlier. We also include
the version of the Respond JS library suitable for versions of IE9 and earlier.

Just before the closing the <body> tag of the ile, we include the jQuery
library and the bootstrap JavaScript library.

Note that the HTML5Shiv workaround, Respond JS, and jQuery
files are loaded from a Content Delivery Network (CDN). This is a
good approach to use when referencing to most of the widely used
JavaScript libraries. This should allow your site to load faster if the
user has already visited a site, which uses the same library from the
same CDN, because the library will be cached in their browser.

Chapter 1

[19]

Creating a home controller with a

Bootstrap-themed view
At the moment, the site we've created will return an error message that states that
the requested resource cannot be found, when we run the project. We irst need
to add a new home controller and associate a view with its default action in order
to avoid any errors. To add a new controller, perform the following steps:

1. Right-click on the Controller folder in the Solution Explorer section
and navigate to Add | Controller….

2. In the Add Scaffold dialog, select the MVC 5 Controller - Empty item,
as shown in the following screenshot:

3. When prompted, in the Add Controller dialog, enter HomeController
as the new controller name and click on Add.

4. After the controller has been added, right-click inside the empty Index
method and select Add View. The method is considered empty if it has
only the one return View() statement in it.

Getting Started with ASP.NET MVC and Bootstrap

[20]

5. In the Add View dialog, leave all the ields at their default values and select
the layout page we've added earlier. Click on Add to continue, as shown in
the following screenshot:

6. An empty view will be generated and you'll notice the ViewBag.Title
property as well as the layout page to use for this view have been added
at the top of the view. Consider the following example:

@{

 ViewBag.Title = "Index";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

There will also be a single <h2> element in the view that you can leave as is.
If you run your project, you should see the view displayed with the default
Bootstrap styling applied to the <h2> element.

Chapter 1

[21]

Adding Bootstrap iles using NuGet
So far we've created two ASP.NET MVC projects that use the Bootstrap frontend
framework. The irst included the Bootstrap assets by default because we created
it with the standard ASP.NET MVC Visual Studio project template. The second, we
created an empty ASP.NET MVC project and added the Bootstrap iles manually.

NuGet is a package manager for the .NET framework and can be used to
automatically add iles and references to your Visual Studio projects. A Bootstrap
package exists on the NuGet gallery site, which enables you to automatically add
the Bootstrap assets to your project.

Bear in mind that though the Bootstrap NuGet package assumes that you want your
Bootstrap iles in the Content and Scripts folders and will create the folders and
iles as such, it will also automatically check whether you have the jQuery library
referenced and if not, add it by design.

NuGet is a package manager for the Microsoft development
platform that makes it easy to add references to existing
libraries. You can read more about it on https://www.
nuget.org/.

Adding the Bootstrap NuGet package using
the dialog
One option for adding the Bootstrap NuGet package to your project is to use the
Manage NuGet Packages dialog box. To access the Manage NuGet Packages dialog
and add the Bootstrap NuGet package, perform the following steps:

https://www.nuget.org/
https://www.nuget.org/

Getting Started with ASP.NET MVC and Bootstrap

[22]

1. Right-click on the References node in the Solution Explorer section
and select Manage NuGet Packages. Click on the Online tab and
type bootstrap in the search box and press Enter, as shown in the
following screenshot:

2. Click on the Install button to add the Bootstrap iles to your project.

Adding the Bootstrap NuGet package using
the Package Manager Console
The second method of adding NuGet packages to your Visual Studio project is
via the Package Manager Console and completing the following steps:

1. Inside Visual Studio, from the Tools menu, navigate to Library Package
Manager | Package Manager Console. This will open the Package
Manager Console window.

2. To install the Bootstrap NuGet packages, type Install-Package
bootstrap, as shown in the following screenshot:

Chapter 1

[23]

3. This will create the Content, fonts, and Scripts folders and add the
necessary Bootstrap iles to each.

Improving your site performance with

bundling and miniication
Bundling and miniication is a feature in ASP.NET that allows you to increase the
speed at which your site loads. This is accomplished by limiting the number of
requests to CSS and JavaScript iles your site needs to make by combining these
types of iles into one large ile and removing all unnecessary characters, such
as comments, white spaces, and new line characters from the iles.

Most modern browsers have a limit of six concurrent connections
per hostname. This means that if you reference more than six CSS
or JavaScript iles on a page, the browser will only download six
iles at a time and queue the rest. Limiting the number of CSS and
JavaScript iles is always a good idea.

Getting Started with ASP.NET MVC and Bootstrap

[24]

Adding bundling to your Bootstrap project
Because we created an empty ASP.NET MVC site, the necessary reference for
adding bundling was not automatically added to our project. Luckily, this can
easily be added by using the NuGet Package Manager Console as follows:

1. Open the Package Manager Console window and enter the
following command:

install-package Microsoft.AspNet.Web.Optimization

2. This will install the Microsoft.AspNet.Web.Optimization NuGet
package as well as all the packages it has dependencies on. These
dependencies are as follows:

 ° Microsoft.Web.Infrastructure

 ° WebGrease

 ° Antlr

 ° Newtonsoft.Json

3. After the NuGet packages have been installed successfully, create a
new static class called BundleConfig inside the App_Start folder.

4. Inside this class, we'll create a new static method called RegisterBundles,
which accepts a parameter called bundles, whose type is a
BundleCollection object. The code for the class is as follows:

public class BundleConfig

{

 public static void RegisterBundles(BundleCollection bundles)

 {

 bundles.Add(new ScriptBundle("~/bootstrap/js").Include(

 "~/js/bootstrap.js",

 "~/js/site.js"));

 bundles.Add(new StyleBundle("~/bootstrap/css").Include(

 "~/css/bootstrap.css",

 "~/css/site.css"));

 }

}

Bundles come in the following two types:

 ° ScriptBundle

 ° StyleBundle

Chapter 1

[25]

The StyleBundle object is used to add style sheets to a bundle and the
ScriptBundle object is used to add JavaScript iles. The Add method of the
BundleCollection object accepts both types of objects. The StyleBundle
and ScriptBundle objects accept a string parameter, which speciies the
virtual path of the iles, and you should therefore, use the Include method
to specify the path to the iles you would like to include in the bundle.

Never include iles with .min in their names, for example,
bootstrap.min.css or bootstrap.min.js in bundles.
The compiler will ignore these iles as they are already
miniied.

Including bundles in your ASP.NET layout
To include the bundles we created earlier in our Layout ile, perform the
following steps:

1. Open the _Layout.cshtml ile in the Shared folder and change its markup
to relect the following (changes are highlighted):
<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <title>@ViewBag.Title</title>

 @Styles.Render("~/bootstrap/css")

 <!--[if lt IE 9]>

 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
 html5shiv.js"></script>

 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
 respond.min.js"></script>

 <![endif]-->

</head>

<body>

 @RenderBody()

 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/1.11.0/jquery.min.js"></script>

 @Scripts.Render("~/bootstrap/js")

</body>

Getting Started with ASP.NET MVC and Bootstrap

[26]

2. If the Visual Studio HTML editor indicates that it cannot ind the Scripts or
Styles objects (that is indicated by the words being highlighted), this means
a reference is missing from the Web.config ile inside the Views folder.

3. To ix this, add a reference to System.Web.Optimization to the list of
namespaces in this Web.config ile. Consider the following example:
<namespaces>

 <add namespace="System.Web.Mvc" />

 <add namespace="System.Web.Mvc.Ajax" />

 <add namespace="System.Web.Mvc.Html" />

 <add namespace="System.Web.Routing" />

 <add namespace="AdventureBootstrap" />

 <add namespace="System.Web.Optimization" />

</namespaces>

Testing bundling and miniication
In order to enable bundling and miniication, open the Web.config ile inside the
root of your project and change the debug attribute of the compilation element
to true as follows:

<system.web>

 <compilation debug="true" targetFramework="4.5" />

 <httpRuntime targetFramework="4.5" />

</system.web>

The same can be achieved by setting the EnableOptimizations property of
the BundleTable object to true. This statement can either be added to the
Global.asax ile's Application_Start method or to the RegisterBundles
method of the BundleConfig class as follows:

BundleTable.EnableOptimizations = true;

After you've added references to the bundles inside your Layout ile and set either
the debug attribute or the EnableOptimizations property to true, build and run
your project. Once the site is open in a browser, view its source. You should see a
markup similar to the following:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

Chapter 1

[27]

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <title>Index</title>

 <link href="/bootstrap/css?v=Tmmo-oSKW9MFWr7qyt2LfyMD1tap2GokH7
 z1W2bhfgY1" rel="stylesheet"/>

 <!--[if lt IE 9]>

 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
 html5shiv.js"></script>

 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
 respond.min.js"></script>

 <![endif]-->

</head>

<body>

<h2>Index</h2>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.0/
jquery.min.js"></script>

<script src="/bootstrap/js?v=raqa-So7giLQpXYq5LQiW8D-
yNoxOAJewB8VXtgFHfE1"></script>

</body>

</html>

Note that the highlighted lines contain the relative paths we've speciied in our
bundles and when clicking on, for example, the /bootstrap/js link, the browser
will open a miniied version of the Bootstrap JavaScript ile. You can see it is miniied
because most white spaces and line breaks have been removed. The code will also
be a combination of the Bootstrap JavaScript ile as well as any other JavaScript iles,
which we might have added to the bundle.

Summary
In this chapter, you've learned what is inside the Bootstrap download and how
to include these iles in your own ASP.NET MVC projects. We've also covered
the various techniques of how to include these iles and how to increase the
performance of your site using bundling and miniication.

In the next chapter, we'll dive into the inner working of Bootstrap's CSS and
HTML elements and how to use them to design the layout of your site.

www.allitebooks.com

http://www.allitebooks.org

Using Bootstrap CSS and

HTML Elements
Bootstrap provides a wide range of HTML elements and CSS settings as well as
an advanced grid system to aid in laying out your web page designs. These settings
and elements include utilities to assist with typography, code formatting, table,
and form layouts to name a few.

All CSS settings and HTML elements combined with the mobile-irst, a luid grid
system, enables developers to build intuitive web interfaces quickly and easily
without having to worry about the nuts and bolts of enabling responsiveness for
smaller device screens and styling user interface elements.

In this chapter, we will cover the following topics:

• The Bootstrap grid system

• Bootstrap tables and buttons

• Laying out different Bootstrap forms

• Using Bootstrap's validation styles for form validation

• Using editor templates to control the HTML output for form elements

• Using images in Bootstrap and coniguring the images to be responsive

Using Bootstrap CSS and HTML Elements

[30]

The Bootstrap grid system
Many websites are reporting an increasing amount of mobile trafic and this trend is
expected to increase over the coming years. The Bootstrap grid system is mobile-irst,
which means it is designed to target devices with smaller displays and then grow as
the display size increases.

Fortunately, this is not something you need to be too concerned about as Bootstrap
takes care of most of the heavy lifting.

Bootstrap grid options
Bootstrap 3 introduced a number of predeined grid classes in order to specify the
sizes of columns in your design. These class names are listed in the following table:

Class
name

Type of device Resolution
Container
width

Column
width

col-xs-* Phones Less than 768 px Auto Auto

col-sm-* Tablets Larger than 768 px 750 px 60 px

col-md-* Desktops Larger than 992 px 970 px 1170 px

col-lg-* High-resolution
desktops

Larger than 1200 px 78 px 95 px

The Bootstrap grid is divided into 12 columns. When laying out your web page, keep
in mind that all columns combined should be a total of 12. To illustrate this, consider
the following HTML code:

<div class="container">

 <div class="row">

 <div class="col-md-3" style="background-color:green;">

 <h3>green</h3>

 </div>

 <div class="col-md-6" style="background-color:red;">

 <h3>red</h3>

 </div>

 <div class="col-md-3" style="background-color:blue;">

 <h3>blue</h3>

 </div>

 </div>

</div>

Chapter 2

[31]

In the preceding code, we have a <div> element, container, with one child <div>
element, row. The row div element in turn has three columns. You will notice that
two of the columns have a class name of col-md-3 and one of the columns has a
class name of col-md-6. When combined, they add up to 12.

The preceding code will work well on all devices with a resolution of 992 pixels or
higher. To preserve the preceding layout on devices with smaller resolutions, you'll
need to combine the various CSS grid classes. For example, to allow our layout to
work on tablets, phones, and medium-sized desktop displays, change the HTML to
the following code:

<div class="container">

 <div class="row">

 <div class="col-xs-3 col-sm-3 col-md-3" style="background-
 color:green;">

 <h3>green</h3>

 </div>

 <div class="col-xs-6 col-sm-6 col-md-6" style="background-
 color:red;">

 <h3>red</h3>

 </div>

 <div class="col-xs-3 col-sm-3 col-md-3" style="background-
 color:blue;">

 <h3>blue</h3>

 </div>

 </div>

</div>

By adding the col-xs-* and col-sm-* class names to the div elements, we'll ensure
that our layout will appear the same in a wide range of device resolutions.

Bootstrap HTML elements
Bootstrap provides a host of different HTML elements that are styled and ready
to use. These elements include the following:

• Tables

• Buttons

• Forms

• Images

Using Bootstrap CSS and HTML Elements

[32]

Bootstrap tables
Bootstrap provides a default styling for HTML tables with a few options to
customize their layout and behaviors. The default ASP.NET MVC scaffolding
automatically adds the table class names to the table element when generating
a list view.

To see this in action, complete the following steps:

1. Create a new view model class in our project's Models folder called
ProductViewModel.cs. This class will contain six properties and its
code is listed as follows:

public class ProductViewModel
{
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public decimal? UnitPrice { get; set; }
 public int? UnitsInStock { get; set; }
 public bool Discontinued { get; set; }
 public string Status { get; set; }
}

2. Next, we'll add a new empty ProductsController class and only
add one action result called Index to it:

public class ProductsController : Controller
{
 private readonly ApplicationDbContext _context;
 private readonly ICurrentUser _currentUser;

 public ProductsController(ApplicationDbContext context,
 ICurrentUser currentUser)
 {
 _context = context;
 _currentUser = currentUser;
 }

 public ActionResult Index()
 {
 var models = _context.Products.Project().
 To<ProductViewModel>().ToArray();
 return View(models);
 }
}

Chapter 2

[33]

The preceding code uses a dependency injection to get a reference
to the Entity Framework DBContext object. The Index method then
retrieves a collection of products from the database and maps it to the
ProductViewModel object using AutoMapper. The list is then passed
to the view.

We're using StructureMap to perform our project's
dependency injection and inversion of control. We're also
using a tool called AutoMapper to automatically map our
domain models to our project's view models. Both libraries
are available via NuGet, and you can read more about each
on their respective websites at www.structuremap.net
and www.automapper.org.

Using AutoMapper, we create a conditional mapping to the Status property of
the ProductViewModel class. If the product is discontinued, we'll set the Status
property to danger; if the UnitPrice is more than 50, the Status property is set
to info; and if the UnitInStock property is less than 20, the Status property is
set to warning. The code that performs this logic looks like the following:

Mapper.CreateMap<Product, ProductViewModel>()

 .ForMember(dest => dest.Status,

 opt => opt.MapFrom

 (src => src.Discontinued ? "danger" : src.UnitPrice > 50 ?
"info" : src.UnitsInStock < 20 ? "warning" : ""));

To generate a view that includes a Bootstrap table, complete the following steps:

1. Right-click inside the Index method and select Add View… from the
context menu. In the Add View dialog window, select List from the
Template drop-down menu and the ProductViewModel class from
the Model class drop-down menu.

www.structuremap.net
www.automapper.org

Using Bootstrap CSS and HTML Elements

[34]

2. Click on the Add button to create the new view, as shown in the
following screenshot:

3. The default ASP.NET MVC scaffolding will generate a basic <table>
element with a class name, table. We'll change the default-generated
markup by adding a table head element (<thead>), which will be used
to deine the column headings for the table.

4. This element will be followed by a table body element (<tbody>). The table
body element will contain the actual row data. The resulting markup will
look like the following code:

<table class="table">

 <thead>

 <tr>

 <th>

 Product Name

 </th>

 <th>

 Unit Price

 </th>

Chapter 2

[35]

 <th>

 Units In Stock

 </th>

 <th>

 Discontinued

 </th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 @foreach (var item in Model)

 {

 <tr class="@item.Status">

 <td>

 @Html.DisplayFor(modelItem => item.
 ProductName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.UnitPrice)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.
 UnitsInStock)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.
 Discontinued)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { /*
 id=item.PrimaryKey */ }) |

 @Html.ActionLink("Details", "Details", new {
 /* id=item.PrimaryKey */ }) |

 @Html.ActionLink("Delete", "Delete", new { /*
 id=item.PrimaryKey */ })

 </td>

 </tr>

 }

 </tbody>

</table>

Using Bootstrap CSS and HTML Elements

[36]

In the preceding markup, note that the <table> element's class name is
set to table. When you run the project and open this view, your table
should be styled using the Bootstrap table styles as illustrated in the
following screenshot:

Styling Bootstrap tables
Bootstrap provides additional classes with which you can style your tables even
more. To create a bordered table, add table-bordered to its class name as follows:

<table class="table table-bordered">

To create a table where each odd row is highlighted with another color than the
base color, change the table's class name to table table-striped as follows:

<table class="table table-striped">

Lastly, Bootstrap also gives you the option to enable the hover state on a table.
This means the row that the user hovers their cursor over will be highlighted.
To accomplish this, change the table class to table table-hover as follows:

<table class="table table-hover">

Chapter 2

[37]

All the different class names can be combined to create a zebra-striped, bordered
table with hovering, as illustrated in the following markup:

<table class="table table-striped table-bordered table-hover">

The result will look similar to the following screenshot in your browser:

Bootstrap contextual table classes
Bootstrap provides additional classes with which you can style either your table's
rows or cells. Adding one of the following classes to either the <td> or <tr> element
of your HTML table will highlight it in either gray, green, blue, orange, or red, which
respectively represents the following:

• Active

• Success

• Info

• Warning

• Danger

www.allitebooks.com

http://www.allitebooks.org

Using Bootstrap CSS and HTML Elements

[38]

Of course, we can also apply these styles dynamically in our ASP.NET MVC views.
In our ProductViewModel view model, we have a Status property, which can be
one of the ive contextual Bootstrap classes. By setting the <tr> element's class to
this property, we can dynamically change the color of the rows in the table, based
on their data as illustrated in the following markup:

<tbody>

 @foreach (var item in Model)

 {

 <tr class="@item.Status">

 <td>

 @Html.DisplayFor(modelItem => item.ProductName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.UnitPrice)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.UnitsInStock)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Discontinued)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { /* id=item.
 PrimaryKey */ }) |

 @Html.ActionLink("Details", "Details", new { /*
 id=item.PrimaryKey */ }) |

 @Html.ActionLink("Delete", "Delete", new { /* id=item.
 PrimaryKey */ })

 </td>

 </tr>

 }

</tbody>

In the preceding code, you will notice how the table row's class was set to @item.
status. This will cause the rows to be highlighted based on the mapping we've
speciied for the Status property, as illustrated in the following screenshot:

Chapter 2

[39]

Bootstrap buttons
Bootstrap provides a wide range of buttons that comes in a variety of colors and
sizes. The core buttons offer a choice of ive colors and four sizes. The color and size
of a button is applied using its class attribute. The list of classes to set the size of the
button is as follows:

• btn btn-default btn-xs

• btn btn-default btn-sm

• btn btn-default

• btn btn-default btn-lg

Using Bootstrap CSS and HTML Elements

[40]

To create four white/default buttons ranging from extra small to large, you'll
implement the following HTML markup:

<div class="row">

 <!-- Standard button -->

 <button type="button" class="btn btn-default btn-xs">Default Extra
 Small</button>

 <button type="button" class="btn btn-default btn-sm">Default
 Small</button>

 <button type="button" class="btn btn-default">Default</button>

 <button type="button" class="btn btn-default btn-lg">Default
 Large</button>

</div>

Button colors are also speciied by a class name. The following is a list of available
color class names:

• btn-default

• btn-primary

• btn-success

• btn-info

• btn-warning

The range of buttons is illustrated in the following screenshot:

Chapter 2

[41]

In the previous screenshot, the buttons' edges are square, not rounded
as the default Bootstrap bundles. This is because the example site
is using a custom Bootstrap style. You can download a number of
different Bootstrap styles from http://bootswatch.com/.

Form layout and elements
Forms make up a large section of most line-of-business applications; and therefore,
applying a uniform style to all forms in your web application is not only visually
pleasing but also provides your users with a friendlier interface. Bootstrap provides
a range of CSS styles to enable you to create visually appealing forms.

Horizontal forms
The default create and edit templates for ASP.NET MVC scaffolding generate
horizontal-styled Bootstrap forms. This is accomplished by automatically adding the
form-horizontal class name to the <form> element. In the following code example,
a horizontal login form is created using the Html.BeginForm helper method; this
form contains two textboxes and a submit button:

@using (Html.BeginForm("Login", "Account", FormMethod.Post, new {
@class = "form-horizontal", role = "form" }))

{

 <div class="form-group">

 @Html.LabelFor(m => m.UserName, new { @class = "col-md-2
 control-label" })

 <div class="col-md-10">

 @Html.TextBoxFor(m => m.UserName, new { @class = "form-
 control" })

 @Html.ValidationMessageFor(m => m.UserName)

 </div>

 </div>

 <div class="form-group">

 @Html.LabelFor(m => m.Password, new { @class = "col-md-2
 control-label" })

 <div class="col-md-10">

 @Html.PasswordFor(m => m.Password, new { @class = "form-
 control" })

 @Html.ValidationMessageFor(m => m.Password)

 </div>

 </div>

http://bootswatch.com/

Using Bootstrap CSS and HTML Elements

[42]

 <div class="form-group">

 <div class="col-md-offset-2 col-md-10">

 <input type="submit" value="Log in" class="btn btn-
 default" />

 </div>

 </div>

}

Note that you can specify the width of the form elements
by using the Bootstrap grid col-* class names.

It is also important to note that both the Html.LabelFor and Html.TextBoxFor helper
methods are contained inside a <div> element with a class name of form-group. This
is important to know when applying the Bootstrap validation styles to a form element.
The resulting form will look similar to the following screenshot:

Vertical/Basic forms
The basic form in Bootstrap always displays its content in a vertical manner. For
example, in the following code, we've taken the same login form we used previously
and removed the form-horizontal class name from the Html.BeginForm helper:

@using (Html.BeginForm("Login", "Account", FormMethod.Post, new { role
= "form" }))

{

 <div class="form-group">

 @Html.LabelFor(m => m.UserName)

 @Html.TextBoxFor(m => m.UserName, new { @class = "form-
 control" })

 @Html.ValidationMessageFor(m => m.UserName)

 </div>

Chapter 2

[43]

 <div class="form-group">

 @Html.LabelFor(m => m.Password)

 @Html.PasswordFor(m => m.Password, new { @class = "form-
 control" })

 @Html.ValidationMessageFor(m => m.Password)

 </div>

 <div class="form-group">

 <input type="submit" value="Log in" class="btn btn-default" />

 </div>

}

The result will look like the following screenshot in your browser:

Inline forms
Inline forms are forms whose elements are aligned next to each other. Inline forms
will only work on devices with viewports that have a width higher or equal to 768
px. It is a good practice to always include labels for your form elements in order
for screen readers to be able to read your forms.

If you wish to hide the labels for your form elements, set its label class to sr-only.
In the following code, we'll use the login form and set its <form> element's class
to form-inline. Also, note the labels are not visible because of their sr-only
class names:

@using (Html.BeginForm("Login", "Account", FormMethod.Post, new { @
class = "form-inline", role = "form" }))

{

 <div class="form-group">

Using Bootstrap CSS and HTML Elements

[44]

 @Html.LabelFor(m => m.UserName, new { @class = "sr-only" })

 @Html.TextBoxFor(m => m.UserName, new { @class = "form-
 control", placeholder = "Enter your username" })

 @Html.ValidationMessageFor(m => m.UserName)

 </div>

 <div class="form-group">

 @Html.LabelFor(m => m.Password, new { @class = "sr-only" })

 @Html.PasswordFor(m => m.Password, new { @class = "form-
 control", placeholder = "Enter your username" })

 @Html.ValidationMessageFor(m => m.Password)

 </div>

 <div class="form-group">

 <input type="submit" value="Log in" class="btn btn-default" />

 </div>

}

This will render the following form in your browser:

Bootstrap validation styles
The default ASP.NET MVC project template supports unobtrusive validation
and automatically adds the required JavaScript libraries to your project. However,
you'll notice that the default validation does not use the Bootstrap-speciic CSS
styles. When an input element fails validation, the jQuery validation plugin changes
its class name to input-validation-error. This class name is declared inside the
Site.css ile and simply draws a red border around the invalid input element as
displayed in the following screenshot:

Chapter 2

[45]

Bootstrap's validation styles, however, set the invalid input element's associated
label's font weight to bold and draw a red border around the element. The reason
the jQuery validation plugin does not work with the Bootstrap validation styles is
because Bootstrap does not apply the validation style to the input element but adds
the has-error class name to the parent element:

<div class="form-group has-error">

 <label class="control-label" for="name">Name</label>

 <input type="text" class="form-control" id="name">

</div>

In this code, the parent <div> element's class is changed to form-group has–error.

In order for our form to work with the Bootstrap validation classes without having to
change the jQuery validation plugin directly, we irst need to add a new JavaScript
ile called jquery.validate.bootstrap.js to our Scripts folder.

Using Bootstrap CSS and HTML Elements

[46]

The following code will modify the default settings for the jQuery validation plugin
by calling the setDefaults function. We then specify how the invalid element
should be highlighted using the highlight function. In this function, we tell the
validation plugin that it should ind the closest element with a .form-group class
and add the has-error class to it. In the unhighlight function, we remove the
has-error class as follows:

$.validator.setDefaults({

 highlight: function (element) {

 $(element).closest('.form-group').addClass('has-error');

 },

 unhighlight: function (element) {

 $(element).closest('.form-group').removeClass('has-error');

 },

});

You can read more about the jQuery validation plugin and
its various settings on its project site located at http://
jqueryvalidation.org.

Next, we need to add the new JavaScript ile to the jqueryval bundle, which
is speciied in the BundleConfig.cs ile. The current jqueryval bundle uses a
wildcard to add all iles that starts with jquery.validate to it. We need to change
this to specify each ile explicitly, as the bundling order is alphabetical for wildcard
bundling and the jquery.validation.bootstrap.js ile should be loaded after
the jQuery validation library. The following code will add all the required validation
libraries and iles to our bundle:

bundles.Add(new ScriptBundle("~/bundles/jqueryval").Include(

 "~/Scripts/jquery.validate.js",

 "~/Scripts/jquery.validate.unobtrusive.js",

 "~/Scripts/jquery.validate.bootstrap.js"));

When building and running the project, you should now see the Bootstrap validation
styles applied to invalid form elements as illustrated in the following screenshot:

http://jqueryvalidation.org
http://jqueryvalidation.org

Chapter 2

[47]

Creating editor templates for primitive

types
Editor templates are used to automatically generate form input elements based on
the datatype of an object's properties. ASP.NET MVC contains a number of standard
editor templates but developers are also able to create their own. Editor templates
are similar to partial views, but where partial views are rendered by name, editor
templates are rendered by type.

When using Visual Studio's default scaffolding functionality to create an edit view
for your model, it generates text input elements using the EditorFor HTML helper
as follows:

@Html.EditorFor(model => model.CategoryName)

www.allitebooks.com

http://www.allitebooks.org

Using Bootstrap CSS and HTML Elements

[48]

The EditorFor helper renders HTML for the model property based on its datatype.
In the case of a string value, the resulting markup will look similar to the following:

<input type="text" name="CategoryName"
 id="CategoryName" data-val-required="The Category Name
 field is required."
 data-val="true" class="text-box single-line">

In this generated markup, the input element has a class of text-box single-line.
For the text element to render correctly using the Bootstrap styles, the input element's
class should be set to form-control.

In order for the EditorFor helper to generate the input element with the correct
class, we need to create an editor template by completing the following steps:

1. First, create a new folder called EditorTemplates inside the Shared folder.

2. Next, add a new ile called string.cshtml to the EditorTemplates folder
and add the following code to it:

@model string

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue, new {
@class = "form-control"})

In the preceding code, we created a textbox and passed in an empty string
as the name for the textbox. This will cause ASP.NET MVC to use the
model's property name as the name for the textbox. The value to show inside
the textbox is speciied by using the FormattedModelValue property of
TemplateInfo. Lastly, we specify the HTML attributes for the element; in
this case, we set its class property to form-control.

Now, when a textbox is rendered using the EditorFor helper, the resulting
HTML markup will look as follows:

<input type="text" name="CategoryName" id="CategoryName" data-val-
required="The Category Name field is required." data-val="true"
class="form-control">

Creating editor templates for nonprimitive

types
ASP.NET MVC enables developers to create editor templates for custom datatypes.
For example, in the following screenshot, we have a form with a textbox and a
multiline textbox:

Chapter 2

[49]

To generate multiline textboxes that look similar across our site and for example,
always renders three rows, perform the following steps:

1. Add a new ile called MultilineText.cshtml to the EditorTemplates
folder.

2. Add the following code to the ile:
@model string

@Html.TextArea("", ViewData.TemplateInfo.FormattedModelValue.
ToString(),new { @class = "form-control", rows = 3 })

This code renders a text area element using the TextArea HTML helper and
sets its class property to use the Bootstrap form-control style as well as
specifying the number of rows the multiline textbox should render.

In order for the view to use the correct editor template, we need to make an
adjustment to our model. By adding a DataType attribute to the multiline
property in our model, we can specify which editor template should be used
when rendering the speciic property. For example, in the following code,
we'll specify that the Description property should use the MultiLineText
editor template:

[DataType(DataType.MultilineText)]

public string Description { get; set; }

Using Bootstrap CSS and HTML Elements

[50]

Bootstrap image classes
Images can be made responsive by setting their class attribute to img-responsive.
This will scale the image in relation to its parent element by setting its maximum
width to 100% and height to auto.

You also have the option to shape images with either rounded corners, circles, or
with an outer border. This is accomplished by setting the element's class to
one of the following Bootstrap classes:

• img-rounded

• img-circle

• img-thumbnail

In the following screenshot, we've displayed a list of employees and their pictures.
The list of employees is retrieved from a database and passed to the view:

Chapter 2

[51]

The code that achieves the preceding result (and can be viewed in the accompanying
sample project) is as follows:

@model Northwind.Web.Models.EmployeeViewModel[]

<div class="container">

 <div class="row">

 <h2>About Us.</h2>

 <p>Northwind Traders are a premier supplier of various food
 products,</p>

 </div>

 <div class="row">

 <h3>Our Team</h3>

 @foreach (var item in Model)

 {

 <div class="col-md-4">

 <img src="@Url.Content("~/Images/employees/" + item.
 EmployeeID + ".png")" alt="@item.FirstName @item.
 LastName" class="img-circle img-responsive">

 <h3>

 @item.FirstName @item.LastName <small>@item.
 Title</small>

 </h3>

 <p>@item.Notes</p>

 </div>

 }

 </div>

</div>

In this code, we looped through each employee item in the model and rendered an
 element using the EmployeeID property as the ilename. Each element's
class attribute is set to img-circle, which will draw the image as a circle.

Using Bootstrap CSS and HTML Elements

[52]

Summary
In this chapter, we've explored how to lay out various elements using the Bootstrap
grid and form classes. We've also solved the problem of using the standard Bootstrap
validation classes instead of the jQuery validation classes for form validation as well
as streamlining the creation of form elements using ASP.NET's editor templates.

In the next chapter, we'll explore the various Bootstrap components including
the Bootstrap navigation bar, input groups, progress bars, and alerts and how
to implement them in your ASP.NET MVC project.

Using Bootstrap Components
Bootstrap provides over a dozen components to offer input groups, dropdowns,
navigation, alerts, as well as iconography. Using these components in your web
application, you can provide a consistent and easy-to-use interface for your users.

Bootstrap components are essentially made up by combining various existing
Bootstrap elements, adding a number of unique class names, and representing
a number of the common metaphors used on many websites.

In this chapter, we will cover the following topics:

• Using the Bootstrap navigation bar

• Implementing a context-sensitive search bar

• Using list groups, badges, and the media object
• Implementing page headers and breadcrumbs

• Creating a paged list using the PagedList library

• How to use alerts, input groups, and button dropdowns

• Implementing a progress bar that reports real-time progress with SignalR

The Bootstrap navigation bar
The Bootstrap navigation bar is one of the components that is used on a majority
of sites using the Bootstrap framework. When creating an ASP.NET MVC website
in Visual Studio, the default template generates all the HTML markup necessary
for a standard navigation bar. The Bootstrap navigation bar looks like the
following screenshot:

Using Bootstrap Components

[54]

The following code inside the _Layout.cshtml ile creates a fixed-top navigation
bar, which is also responsive. When the site is opened on a device with a smaller
screen size, it will display a button with three bars, and when you click on it,
it will show the menu vertically:

<div class="navbar navbar-inverse navbar-fixed-top">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 </button>

 @Html.ActionLink("Northwind Traders", "Index", "Home",
 null, new { @class = "navbar-brand" })

 </div>

 <div class="navbar-collapse collapse">

 @Html.Partial("_BackendMenuPartial")

 @Html.Partial("_LoginPartial")

 </div>

 </div>

</div>

Note that we are using two partial views to generate the rest of the navigation bar
based on whether the current user is logged in or not. We'll add a global search
functionality to the navigation bar when the user is logged in; this will return
results based on the page the user is currently visiting.

First, add the following code to the _BackendMenuPartial view; this will generate
a search box inside the navigation bar:

@using (Html.BeginForm("Index", "Search", FormMethod.Post, new {@class
= "navbar-form navbar-left", role = "search"}))

{

 <div class="form-group">

 @Html.TextBox("searchquery","",new { @id="searchquery",
 @class="form-control input-sm", placeholder="Search" })

 @Html.Hidden("fromcontroller", @ViewContext.RouteData.
 Values["controller"], new { @id = "fromcontroller" })

 </div>

 <button type="submit" class="btn btn-default btn-xs">GO</button>

}

Chapter 3

[55]

You'll notice that in the preceding code, we have a hidden ield called
fromcontroller that contains the name of the current controller. We get this from
the RouteData object, which is a property on ViewContext. This information will
be used to return search results based on the current page.

The form will perform an HTTP POST method to the Index action of the Search
controller; this in turn will check the controller name from which the request
came and return the appropriate data and view. The code that performs the
search is as follows:

[HttpPost]

public ActionResult Index(string searchquery, string fromcontroller)

{

 switch (fromcontroller)

 {

 case "Products":

 return RedirectToAction("SearchProductsResult", new {
 query = searchquery });

 case "Customers":

 return RedirectToAction("SearchCustomersResult", new {
 query = searchquery });

 case "Employees":

 return RedirectToAction("SearchEmployeesResult", new {
 query = searchquery });

 }

 return View();

}

public ActionResult SearchCustomersResult(string query)

{

 ViewBag.SearchQuery = query;

 var results = _context.Customers.Where(p => p.CompanyName.
 Contains(query)

 || p.ContactName.Contains(query)

 || p.City.Contains(query)

 || p.Country.Contains(query)).ToList();

 return View(results);

}

Using Bootstrap Components

[56]

List groups
List groups are lexible components that either display simple lists of elements or
can be combined with other elements to create complex lists with custom content.
Our search will redirect us to the SearchProductsResult view when the user
searches for products. This view uses a list group to display the product items
found. The method that retrieves the products from the database is as follows:

public ActionResult SearchProductsResult(string query)

{

 ViewBag.SearchQuery = query;

 var results = _context.Products.Where(p => p.ProductName.
 Contains(query)).ToList();

 return View(results);

}

The Razor markup for the view represents the following:

@model IEnumerable<Northwind.Data.Models.Product>

@{

 ViewBag.Title = "Product Search Results";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="container">

 <div class="page-header">

 <h1>Product Results <small>Results for your search term:
 "@ViewBag.SearchQuery"</small></h1>

 </div>

 <ul class="list-group">

 @foreach (var item in Model)

 {

 <a href="@Url.Action("Edit","Products", new { id=@
 item.ProductID})" class="list-group-item">@item.
 ProductName @item.UnitsInStock</
 span>

 }

</div>

In this markup, the product items are loaded into an unordered list element
 as anchor <a> elements. Each anchor element's class name should be set
to list-group-item. The view should look like the following screenshot in
your browser:

Chapter 3

[57]

Badges
Badges are used to highlight items. You would normally see badges to indicate the
number of new or unread items, depending on the type of application. We used the
following badges on the product's search result page to indicate the number of units
currently in stock:

<a href="@Url.Action("Edit","Products", new { id=@item.ProductID})"
class="list-group-item">@item.ProductName @item.
UnitsInStock

Adding a badge to an element is as simple as adding a element and setting
its class name to badge.

The media object
The media object component can be used to build hierarchal style lists such as
blog comments or tweets. In our example application, we used the media object to
return a search result view when the user searches for employees. As the Northwind
database contains a ield (ReportsTo) that indicates which employee the other
employees report to, the media object component would be ideal to indicate this
visually. The method that searches for the employees and returns the results to the
view is as follows:

public ActionResult SearchEmployeesResult(string query)

{

 ViewBag.SearchQuery = query;

 var results = _context.Employees.Where(p => p.FirstName.
 Contains(query)

 || p.LastName.Contains(query)

 || p.Notes.Contains(query)).ToList();

 return View(results);

}

www.allitebooks.com

http://www.allitebooks.org

Using Bootstrap Components

[58]

The view for the employee's search result uses the media object component to style
the employee information and display the employee's photos as follows:

@model IEnumerable<Northwind.Data.Models.Employee>

@{

 ViewBag.Title = "Employees Search Results";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="container">

 <div class="page-header">

 <h1>Employees Results <small>Results for your search term:
 "@ViewBag.SearchQuery"</small></h1>

 </div>

 @foreach (var item in Model)

 {

 <div class="media">

 <a class="pull-left" href="@Url.Action("Edit",
 "Employees", new { id = @item.EmployeeID })">

 <img class="media-object" src="@Url.Content("~/
 Images/employees/" + @item.EmployeeID + ".png")"
 alt="@item.FirstName" width="64" height="64">

 <div class="media-body">

 <h4 class="media-heading">@item.FirstName @item.
 LastName</h4>

 @item.Notes

 @foreach (var emp in @item.ReportingEmployees)

 {

 <div class="media">

 <img alt="@emp.FirstName" src="@
Url.Content("~/Images/employees/" + @emp.EmployeeID + ".png")"
class="media-object" width="64" height="64">

 <div class="media-body">

 <h4 class="media-heading">@emp.FirstName
 @emp.LastName</h4>

 @emp.Title

 </div>

 </div>

 }

 </div>

 </div>

 }

</div>

Chapter 3

[59]

The media object component is built using a combination of elements with the class
names of media, media-heading and media-body. The media-object class name is
used to indicate media objects such as images, video, or audio. The resulting view
should look similar to the following screenshot:

Page headers
The Bootstrap page header is used to provide a clear indication to the user that the
page consists of a heading that introduces them to the page they are visiting. The page
header is essentially a <h1> element wrapped inside a <div> element with a class
name of page-header. You can also utilize the <small> element to provide additional
information to the user about the page. Bootstrap also adds a horizontal line below
the page header that provides a visual separation from the rest of the page.

The following HTML markup creates a page header:

<div class="page-header">

 <h1>Categories <small>Add, edit and delete product categories</
 small></h1>

</div>

Using Bootstrap Components

[60]

This markup will generate the following screenshot in your browser:

Breadcrumb
Breadcrumb is a common metaphor used in web design to indicate to the user what
their current location is inside a navigation tree. It is similar to a ile path in Windows
Explorer. Breadcrumb is ideal for a site with many subnavigation levels and allows
the user to navigate between the varied parent and child pages.

In the following markup, we'll use a combination of Razor and HTML to build a
breadcrumb component with which the user can navigate back to the home page
or the Manage page:

<ol class="breadcrumb">

 @Html.ActionLink("Home","Index","Home")

 @Html.ActionLink("Manage", "Index", "Manage")

 <li class="active">Categories

The preceding markup contains an ordered list element with a class name
of breadcrumb. Each child element of the breadcrumb is added as a list item
element. To indicate to the user that the last level of the breadcrumb is the active
page, we set its element's class name to active. The result of the previous
code will look like the following screenshot when visiting the page:

Pagination
Pagination is used to divide content, usually lists, into separate pages. For example,
when scaffolding a list view, the default scaffolding template generates a table that
contains a row for each item in the collection you pass into the view. This is ine
for small amounts of data, but if the list contains hundreds of items, your page will
take a very long time to load. Ideally, we would like to split our list view into a
manageable view that has ive items per page. In the following screenshot, we've
changed the Products page's table to use pagination:

Chapter 3

[61]

The aforementioned view is accomplished using the PagedList.Mvc NuGet package
and completing the following steps:

1. To install it, run the following command inside the Visual Studio Package
Manager Console:

Install-Package PagedList.Mvc

2. This command will add the necessary dependencies to your project. Next,
open your controller action and change its code to the following:

public ActionResult Index(int? page)

{

 var models = _context.Products.Project().
 To<ProductViewModel>().OrderBy(p => p.ProductName);

 int pageSize = 5;

 int pageNumber = (page ?? 1);

 return View(models.ToPagedList(pageNumber, pageSize));

}

In the preceding code, we changed the action method to accept an integer
parameter called page. This parameter is used to indicate which page of the
list the user is currently viewing. We then retrieved a list of products from
our database and ordered it using the ProductName property.

Using Bootstrap Components

[62]

The pageSize variable is used to set the number of items each page should
display. We then returned the product items as PagedList. The PagedList
object is part of the PagedList.Mvc library that we installed via NuGet earlier.

3. Next, open the associated view and add the following code to the top
of the ile:
@using PagedList.Mvc;

@model PagedList.IPagedList<Northwind.Web.Models.ProductViewModel>

4. The using statement tells the view to reference the PagedList library.
We then set the view's model to a PagedList representation of our
ProductViewModel object.

5. You do not need to change anything in your existing markup; however,
to indicate the current page number, add the following code to your page:

Page @(Model.PageCount < Model.PageNumber ? 0 : Model.PageNumber)
of @Model.PageCount

6. The preceding code will display the current page number and the total
number of pages. To add a paging element to the page that conforms to the
default Bootstrap styling, add the following code just below the closing tag
of the <table> element:

@Html.PagedListPager(Model, page => Url.Action("Index", new { page
}), PagedListRenderOptions.ClassicPlusFirstAndLast)

In the preceding code, we used the PagedListPager HTML helper that
is included in the PagedList library to display a pagination element; this
element contains all the page numbers as well as the buttons that will
navigate to the irst and last page. You'll notice that the last parameter of the
PagedListPager helper supports nine different pagination layouts. They are
as follows:

 ° Classic

 ° ClassicPlusFirstAndLast

 ° Minimal

 ° MinimalWithItemCountText

 ° MinimalWithPageCountText

 ° OnlyShowFivePagesAtATime

 ° PageNumbersOnly

 ° TwitterBootstrapPager

 ° TwitterBootstrapPagerAligned

Chapter 3

[63]

Setting the parameter to PagedListRenderOptions.
TwitterBootstrapPagerAligned will show two buttons, titled Older
and Newer. They are aligned to the edges of the container, as shown in
the following screenshot:

Setting the parameter to PagedListRenderOptions.
TwitterBootstrapPager will add the Previous and Next buttons that
are centered below <table>:

The PagedList library supports the default Bootstrap styles out of the
box; this means that you do not need to do anything speciic to enable
the correct styling.

Using Bootstrap Components

[64]

Input groups
Input groups are another way to provide the user with additional information
about the data you expect them to enter in a speciic form element. Bootstrap
provides classes to add sections either before or after an input element. These
sections can contain either text or any of the 200 Glyphicons included in Bootstrap.

Bootstrap comes prepackaged with 200 Glyphicon Halling icons.
Normally, the Glyphicon Hallings icons that are set are not free,
but their creator made them available to Bootstrap free of charge.
You can read more about them at http://getbootstrap.com/
components/.

To create a text input element to indicate to the user that we require them to enter a
phone number into the ield, we'll use the following markup:

<div class="form-group">

 @Html.LabelFor(model => model.Phone, new { @class = "control-label
 col-md-2" })

 <div class="col-sm-4 input-group">

 @Html.EditorFor(model => model.Phone)

 @Html.ValidationMessageFor(model => model.Phone)

 </div>

</div>

The result of this markup will be a text input element with a gray section to its left,
with an image of a telephone inside it, as illustrated in the following screenshot:

http://getbootstrap.com/components/
http://getbootstrap.com/components/

Chapter 3

[65]

We can also create input groups that are aligned on the right-hand side of text inputs
and that contain text instead of images. For example, the following markup creates
a text input ield that indicates to the user that we only require the irst part of an
e-mail address and that the last part will automatically be appended:

<div class="form-group">

 @Html.LabelFor(model => model.Email, new { @class = "control-label
 col-md-2" })

 <div class="col-sm-4 input-group">

 @Html.EditorFor(model => model.Email)

 @@northwind.com

 </div>

</div>

The result of the preceding markup will look like the following screenshot in
your browser:

You can also create a text input with a gray section on both sides with the
following code:

<div class="form-group">

 @Html.LabelFor(model => model.UnitPrice, new { @class = "col-sm-2
 control-label" })

 <div class="col-sm-2 input-group">

 $

 @Html.TextBoxFor(model => model.UnitPrice, new { @class =
 "form-control" })

 .00

 @Html.ValidationMessageFor(model => model.UnitPrice)

 </div>

</div>

Using Bootstrap Components

[66]

In the preceding code, we created a text input with a gray section with a dollar sign
on the left-hand side and a gray section that contains .00 on the right-hand side.
This will indicate to the user that we expect a round number and that the system
always expects zero decimals, as shown in the following screenshot:

Button dropdowns
Button dropdowns are useful when you need a button that can perform multiple
related actions. For example, you could have a save button that saves a record, but
you would also like to give the user an option to save the record and automatically
show a new empty form to create another record. This will be beneicial to the user
when they need to create multiple records of the same type.

For example, the following code creates a button dropdown inside a form that will
create a save button with two additional actions:

<div class="form-group">

 <div class="col-sm-offset-2 col-sm-10">

 <div class="btn-group">

 <button type="submit" class="btn btn-primary
 btn-sm">Save</button>

 <button type="button" class="btn btn-primary btn-sm
 dropdown-toggle" data-toggle="dropdown">

 Toggle Dropdown

 </button>

 <ul class="dropdown-menu" role="menu">

 Save & New

 <li class="divider">

 Duplicate

 </div>

 </div>

</div>

Chapter 3

[67]

The result will look like the following screenshot in your browser:

Alerts
The alert component is used to provide visual feedback to the user. This can be used
to provide the user with either conirmation messages that a record has been saved,
warning messages that an error occurred, or an information message based on a
system event.

Bootstrap provides four differently styled alerts. For instance, the following markup
generates a green, blue, orange, and red alert box:

<div class="alert alert-success">Success. You have
successfully saved the file.</div>

<div class="alert alert-info">Info. Something has just
happened.</div>

<div class="alert alert-warning">Warning! The file size is too
big.</div>

<div class="alert alert-danger">Danger! The file could not be
saved.</div>

Using Bootstrap Components

[68]

The alert boxes should look similar to the following screenshot in your browser:

A dismissible alert is an alert that can be closed by the user by clicking on a small X
icon in its top right-hand corner. In order to create a dismissible alert, you can use
the alert-dismissible class name as follows:

<div class="alert alert-warning alert-Dismissible" role="alert">

 <button type="button" class="close" data-dismiss="alert"><span
aria-hidden="true">×Close</
button>

 Alert! This is a dismissible alert.

</div>

You can refer to this book's accompanying sample project for an
indication of how to display speciically styled alerts directly from
your ASP.NET MVC controllers. These alerts are adapted from
Matt Honeycutt's example on GitHub: https://github.com/
MattHoneycutt/Fail-Tracker.

https://github.com/MattHoneycutt/Fail-Tracker
https://github.com/MattHoneycutt/Fail-Tracker

Chapter 3

[69]

Progress bars
Progress bars are a metaphor used with traditional desktop as well as web
development to provide visual feedback to a user on the progress of a task
or action. Bootstrap provides a number of differently styled progress bars.

The basic progress bar
The basic Bootstrap progress bar displays a plain blue-colored progress bar. Adding
a element with a class name of sr-only is good practice in order to allow
screen readers to read the progress percentage. The following markup generates
a basic progress bar with a heading:

<h4>Basic Progressbar</h4>

<div class="progress">

 <div class="progress-bar" role="progressbar" aria-valuenow="80"
 aria-valuemin="0" aria-valuemax="100" style="width: 80%;">

 80% Complete

 </div>

</div>

The result of this markup is shown in the following screenshot:

You can also display an inline label for the progress bar by adding text inside its
<div> element:

<h4>Basic Progressbar with label</h4>

<div class="progress">

 <div id="progressbarTitle" class="progress-bar" role="progressbar"
 aria-valuenow="60" aria-valuemin="0" aria-valuemax="100"
 style="width: 60%;">

 60%

 </div>

</div>

Using Bootstrap Components

[70]

The result of this code is shown in the following screenshot:

Contextual progress bars
You can use the same button and alert style classes to generate differently colored
progress bars. This is accomplished by setting the progress bar's class name to one of
the following:

• progress-bar-success

• progress-bar-info

• progress-bar-warning

• progress-bar-danger

The result is illustrated in the following screenshot:

Chapter 3

[71]

Striped and animated progress bars
To generate progress bars with a gradient striped effect, add the class name of
progress-striped to the progress bar's parent <div> element:

 <h4>Striped Progressbar(Danger)</h4>

 <div class="progress progress-striped">

 <div class="progress-bar progress-bar-danger"
 role="progressbar" aria-valuenow="80" aria-valuemin="0"
 aria-valuemax="100" style="width: 80%">

 80% Complete (danger)

 </div>

 </div>

This result is shown in the following screenshot:

To add an animated effect that will give the impression that the stripes on the
progress bar are moving, simply add a class of active to its parent <div> element:

<div class="progress progress-striped active">

 <div class="progress-bar progress-bar-danger" role="progressbar"
 aria-valuenow="80" aria-valuemin="0" aria-valuemax="100"
 style="width: 80%">

 80% Complete (success)

 </div>

</div>

Dynamically updating the progress

bar's percentage
A progress bar is only worth using when it actually gives feedback on the progress
of a speciic task. To update the progress bar dynamically using ASP.NET MVC,
perform the following steps:

1. Add the SignalR NuGet package to our project by running the following
command in the Visual Studio Package Manager Console:

Install-Package Microsoft.AspNet.SignalR

Using Bootstrap Components

[72]

SignalR is a library for ASP.NET; this library makes it very easy
to add real-time functionality and feedback to your applications.
You can read more about it at www.signalr.net.

2. Next, add a new folder called Hubs to your project, and add a new
class called ProgressbarHub.cs to the folder. Change its code to the
following code:

using System.Threading;

using Microsoft.AspNet.SignalR;

namespace Northwind.Web.Hubs

{

 public class ProgressbarHub : Hub

 {

 public void SendProgress()

 {

 for (int i = 0; i <= 100; i++)

 {

 Thread.Sleep(50);

 Clients.Caller.sendMessage(i + "%");

 }

 }

 }

}

3. In the preceding code, our class inherits from the SignalR Hub class
and contains a single method called SendProgress, which will
increment a variable and send the value to any SignalR clients
using the sendMessage method.

4. Next, we add a reference to the SignalR virtual path. Open the
_Layout.cshtml ile, and add the following line to the bottom of the ile:
<script src="~/signalr/hubs"></script>

5. We'll also add a reference to the SignalR JavaScript library in our existing
bundles. Open the BundleConfig.cs ile located in the App_Start folder,
and change the jquery bundle to include the SignalR library as follows:

bundles.Add(new ScriptBundle("~/bundles/jquery").Include(

 "~/Scripts/jquery-{version}.js",

 "~/Scripts/jquery.signalR-2.0.3.js"));

www.signalr.net

Chapter 3

[73]

6. Finally, on the page where we have our progress bars, add the following
script inside the Scripts section:

@section scripts

{

 <script type="text/javascript" language="javascript">

 $("#start").click(function () {

 $(".progress-bar").width('0%');

 var progressNotifier = $.connection.progressbarHub;

 progressNotifier.client.sendMessage = function
 (message) {

 updateProgress(message);

 };

 $.connection.hub.start().done(function () {

 progressNotifier.server.sendProgress();

 });

 });

 function updateProgress(message) {

 $(".progress-bar").width(message);

 $("#progressbarTitle").html(message + ' Complete');

 }

 </script>

}

The preceding code will be executed when the user clicks on a button with
an ID of start. It will irst set all the progress bars on the page's width to 0
and initialize a connection to the server. We then set the function name that
will be called from the server side. In this scenario, the JavaScript function's
name is updateProgress.

Finally, we establish a connection to the server and start the server-side
operation. As you can see, we invoked the sendProgress function—this is
the name of the method declared inside the ProgressbarHub class.

As a result of the code, you will see that all the progress bars on the page
will increase their values from 0 to 100.

Using Bootstrap Components

[74]

Summary
In this chapter, we explored the many different Bootstrap components as well as
learned how to use them in your ASP.NET MVC project. We also looked at NuGet
packages to aid you in creating paged lists and to dynamically update progress bars.

In the next chapter, we'll delve deeper into the Bootstrap components by
investigating how to add more interactivity to your site using the Bootstrap
JavaScript plugins.

Using Bootstrap

JavaScript Plugins
Bootstrap's JavaScript features are all built on top of the jQuery library and either
provide completely new functionality or extend the functionality of the existing
Bootstrap components.

The plugins can be used by simply adding data attributes to your page elements,
but they also provide a rich programmatic API, if needed.

In this chapter, we will cover the following topics:

• How to use dropdowns and create a cascading dropdown

• How to use modal dialogs

• How to partition your views with tabs

• How to implement tooltips and popovers

• How to use the accordion component

• How to create a slideshow using the carousel

Using Bootstrap JavaScript Plugins

[76]

In order to use Bootstrap plugins, we'll need to include the
bootstrap.js or bootstrap.min.js ile in our project. This
ile contains all the Bootstrap plugins, but if you do not intend to
use every plugin in your project, it is a good idea to customize
which components are to be included in the bootstrap.js
ile. This will make the size of the Bootstrap library smaller
and allow the website to load faster. To access these plugins,
navigate to http://getbootstrap.com/customize/ and
select the plugins that you'll be using in your project.

Data attributes versus the

programmatic API
Bootstrap offers the ability to use its plugins entirely through the HTML markup.
This means that in order to use most of the plugins, you do not need to write a
single line of JavaScript. Using data attributes is the recommended approach
and should be your irst option when using Bootstrap plugins.

For example, to allow an alert element to be dismissible, you'll add the
data-dismiss="alert" attribute to either a button or anchor element,
as illustrated in the following code:

<div class="alert alert-danger">

 <button data-dismiss="alert" class="close" type="button">×</
 button>

 Warning Shuttle launch in t-minus 10 seconds.

</div>

You also have the option to perform the same action using the programmatic API via
JavaScript. The following code uses jQuery to close a speciic alert element when
the user clicks on a button:

<button class="close" type="button" onclick="$('#myalert').
alert('close')">×</button>

http://getbootstrap.com/customize/

Chapter 4

[77]

Cascading dropdowns
You can add drop-down menus to almost any Bootstrap component using the
dropdown plugin. A cascading dropdown is a dropdown that updates its data based
on a value selected in another dropdown. To add cascading dropdowns, perform the
following steps:

1. We'll add drop-down menus to two buttons which will list the region and
territory data that was retrieved from a database. When the user selects
a region, the Territory drop-down list will update to show only those
territories associated with the selected region. The following screenshot
illustrates the end result:

2. The two drop-down menus will be used in our Edit Customer view, and in
order for the list of territories and regions to be accessible in our view, we'll
irst add them to the ViewBag object using the following code:
public ActionResult Edit(int id)

{

 var model = _context.Customers.First(c => c.CustomerId == id);

 ViewBag.RegionId = new SelectList(_context.Regions,
 "RegionId", "RegionDescription", model.RegionId);

 ViewBag.TerritoryId = new SelectList(_context.Territories.
 Where(t => t.RegionId == model.RegionId), "TerritoryId",
 "TerritoryDescription", model.TerritoryId);

 return View(model);

}

Using Bootstrap JavaScript Plugins

[78]

In this code, we irst loaded the requested customer from the database and
then added a list of regions and territories from the database to the ViewBag
object. You will notice that we only retrieved the territories in the selected
customer's region.

3. Next, we add the Razor markup to our view to create two buttons with
drop-down menus. In the following code, we'll create two new Bootstrap
form groups that contain a label for the region and territory properties as
well as hidden elements that will carry the selected region and territory ID.
We iterate over the regions and territories that were passed to the view via
the ViewBag object and build up the menu items.
<div class="form-group">
 @Html.LabelFor(model => model.RegionId,
 new { @class = "control-label col-md-2" })
 @Html.HiddenFor(model => model.RegionId)
 <div class="col-md-10">
 <div id="regiondropdown" class="dropdown">
 <button id="regionbutton" class="btn btn-sm btn-info"
 data-toggle="dropdown">@Model.Region.
 RegionDescription</button>
 <ul class="dropdown-menu">
 @foreach (var item in ViewBag.RegionId)
 {
 <a href="#" tabindex="-1" data-value="@
 item.Value">@item.Text
 }

 </div>
 </div>
</div>
<div class="form-group">
 @Html.LabelFor(model => model.TerritoryId, new { @class =
 "control-label col-md-2" })
 @Html.HiddenFor(model => model.TerritoryId)
 <div class="col-md-10">
 <div id="territorydropdown" class="dropdown">
 <button id="territorybutton" class="btn btn-
 sm btn-info" data-toggle="dropdown">@Model.Territory.
 TerritoryDescription</button>
 <ul id="territories" class="dropdown-menu">
 @foreach (var item in ViewBag.TerritoryId)
 {
 <a href="#" tabindex="-1" data-value="@
 item.Value">@item.Text
 }

 </div>
 </div>
</div>

Chapter 4

[79]

Note that we're setting the tabindex item of the anchor
element <a> inside the menu to -1. This is done to
prevent the element from being part of the tab order.

4. Next, add a new partial view called Territories.cshtml to your project.
We'll use this partial view to load the territories each time the user changes
the region. In order to load the partial view, we'll need to add a new method
to CustomerController that returns PartialViewResult. The code for this
method is as follows:

public PartialViewResult Territories(int regionId)

{

 ViewBag.TerritoryId = new SelectList(_context.Territories.
 Where(t => t.RegionId == regionId), "TerritoryId",
 "TerritoryDescription");

 return PartialView();

}

This method receives a region ID as a parameter and then loads the region's
associated territories into the ViewBag object. Finally, the method returns the
Territories partial view we've created earlier.

5. Finally, in order to load the associated territories when the user selects a
different region, we'll need to add a bit of JavaScript to our page. To do this,
create a new section in the view, and add the following JavaScript code to it:

@section scripts{

 <script type="text/javascript">

 $('#regiondropdown li a').click(function () {

 var $this = $(this);

 var region = $this.data('value');

 var regionName = $this.text();

 $('#RegionId').val(region);

 $.get("/Customers/Territories", { regionId: region })

 .done(function (data) {

 $('#regionbutton').text(regionName);

 $('#territorybutton').text('Select Territory');

 $('#territories').html(data);

 });

 });

 $('body').on("click", '#territories li a', function () {

 var $this = $(this);

 var territory = $this.data('value');

 var territoryName = $this.text();

Using Bootstrap JavaScript Plugins

[80]

 $('#TerritoryId').val(territory);

 $('#territorybutton').text(territoryName);

 });

 </script>

}

The preceding JavaScript creates a click handler for the region drop-down
element and saves the selected region ID to a variable. This variable is then
passed to the jQuery get method, which in turn makes a request to the
Territories method in CustomerController. The Territories method
returns a partial view with a list of territories whose region IDs match the
received parameter.

The code also uses the jQuery on method to attach an event handler to all
anchor child elements of the element whose ID is territories. The event
handler then saves the selected territory ID to the hidden ield inside the
form we created earlier.

Modal dialogs
Modals are used to provide a pop-up dialog style element that can be used to
provide information to the user or even allow the user to complete a form inside the
modal. A Bootstrap modal is essentially made of three parts: a header, body, and
footer. You can put any standard HTML markup inside the modal's body element,
including standard text or even an embedded YouTube video.

As a general rule, always place the modal's markup in a top-level position inside your
view—the top or bottom of the view is the best place to put your modal markup.

Using the following HTML and Razor markup, we'll create a modal that prompts the
user whether they would like to continue deleting a certain customer record from the
database. We'll declare a <form> element inside the modal's body and use a button
that is created inside the modal's footer element to submit the form. We'll also create
a button that the user can click on to dismiss the modal. This is accomplished by
adding the data-dismiss="modal" attribute to the button as follows:

<div class="modal fade" id="deleteConfirmationModal" tabindex="-1"
role="dialog" aria-hidden="true">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <button type="button" class="close" data-
 dismiss="modal" aria-hidden="true">×</button>

 <h4 class="modal-title">Deletion confirmation</h4>

Chapter 4

[81]

 </div>

 <div class="modal-body">

 <p>You're about to delete the customer
 '@Model.CompanyName'. </p>

 <p>

 Are you sure you want to continue?

 </p>

 @using (Html.BeginForm("Delete", "Customers",
 FormMethod.Post, new { @id = "delete-form",
 role = "form" }))

 {

 @Html.HiddenFor(m => m.CustomerId)

 @Html.AntiForgeryToken()

 }

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-default"
 onclick="$('#delete-form').submit();">Yes,
 delete this customer.</button>

 <button type="button" class="btn btn-primary"
 data-dismiss="modal">No, do not delete.</button>

 </div>

 </div>

 </div>

</div>

The form is submitted to the Delete action inside CustomerController. The code
for this method is as follows:

[HttpPost, ValidateAntiForgeryToken]

public ActionResult Delete(int customerId)

{

 var model = _context.Customers.FirstOrDefault(i =>
 i.CustomerId == customerId);

 if (model != null)

 {

 _context.Customers.Remove(model);

 _context.SaveChanges();

 return RedirectToAction("Index").WithSuccess("Customer
 (" + model.CompanyName + ") deleted.");

 }

 return RedirectToAction("Index").WithError("Customer was
 not found.");

}

Using Bootstrap JavaScript Plugins

[82]

In order to show the modal, we do not need to write any JavaScript. We can simply
add a data-toggle="modal" attribute to the anchor or button element that should
show the modal when the user clicks on it, as illustrated in the following code:

<a href="#" data-toggle="modal" data-target="#deleteConfirmationModal
">Delete

To indicate which modal to show, we specify the ID of the modal inside the
data-target attribute.

The result of the aforementioned code will display a modal similar to the one
illustrated in the following screenshot:

You also have the option to not use the data- API to show the modal, using jQuery
to show and hide the modal. The following JavaScript shows the modal which ID is
set to deleteConfirmationModal when the page loads:

$(document).ready(function () {

 $('#deleteConfirmationModal').modal('show');

});

You can also use the same function in order to hide the modal:

$('#deleteConfirmationModal').modal('hide');

Chapter 4

[83]

Tabs
Tabs provide an option to split your content into separate pages. This is an ideal
component when you have a particularly large form, which you want to split up into
a logical grouping. For example, when you're editing a customer's record, you might
want to split their contact details from their address details, as illustrated in the
following screenshot:

Bootstrap tabs are divided into two parts. You irst need to specify the tab names and
the ID of the corresponding <div> element to show when the user clicks on the tab.
This is done by creating a standard unordered list element with the tab names
as child list items . The element's class must be set to nav nav-tabs or nav
nav-pills, as illustrated in the following script:

<ul class="nav nav-tabs">

 <li class="active">Customer
 Info

 Address

Using Bootstrap JavaScript Plugins

[84]

You can use a tab or pill navigation by setting the element's data-toggle
attribute to either tab or pill and setting the element's class to nav-pills.
The result will look like the following screenshot in your browser:

To specify the content for the tabs, create a new <div> element and set its class to
tab-content. Create a <div> element for each tab inside the parent <div> element
and set each tab's <div> element's class to tab-pane as follows:

<div class="tab-content well">

 <div class="tab-pane active" id="info">

 Info Tab Content goes here

 </div>

 <div class="tab-pane" id="address">

 Address Tab Content goes here

 </div>

</div>

In the preceding markup, we created two tabs and set the active tab to the info tab
by setting its class to active.

Chapter 4

[85]

You can also activate a speciic page using jQuery. To activate the address tab as
soon as the page loads, use the following code:

$(document).ready(function () {

 $('.nav-tabs a[href="#address"]').tab('show');

});

Tooltips
Bootstrap's tooltip plugin is an updated version of Jason Frame's jQuery.tipsy plugin.
Tooltips can be used to provide users with additional information labels about speciic
content on your pages or provide insight into what input is expected in form elements.

Tooltips can be used on a variety of elements; for example, the following markup
shows a tooltip when a user hovers over an anchor <a> element:

<a data-toggle="tooltip" data-placement="top" data-original-
title="Welcome to the wonderful World of Grammar!" href="#" >World of
Grammar

To use a tooltip on any element, add a data-toggle="tooltip" attribute to it. You
can specify the placement of the tooltip by setting the data-placement attribute to
one of the following values:

• top

• bottom

• left

• right

Finally, set the value of the data-original-title attribute to specify what text
should be shown inside the tooltip.

One caveat of tooltips is that because of performance concerns, the data- API is
opt-in, which means you have to initialize the plugin manually. To do this, add the
following JavaScript to your page:

<script type="text/javascript">

 $(document).ready(function () {

 $('[data-toggle="tooltip"]').tooltip();

 });

</script>

Using Bootstrap JavaScript Plugins

[86]

The preceding code inds all elements whose data-toggle attribute is set to tooltip
and initializes the tooltip plugin for these elements. The result will look similar to the
following screenshot in your browser:

Chapter 4

[87]

Popovers
Popovers are similar to tooltips due to the fact that they can provide users with
additional information about an element, but they are designed to show a little
more content, as popovers also allow you to display a header.

Popovers are deined in a similar fashion in which you would deine a popup
by adding the data-toggle, data-placement, data-original-title, and
data-content attributes to an element. The following markup displays a
popup when a user clicks on an anchor <a> element:

<a data-content="The protagonist of Franz Kafka's short story The
Metamorphosis" data-placement="bottom" title="" data-toggle="popover"
href="#" data-original-title="From Wikipedia">Gregor Samsa

Setting the data-toggle attribute to popover speciies to the plugin that it needs
to show a popover. The data-content attribute contains the content that will be
shown inside the popover, and the data-original-title attribute sets the title of
the popover. The data-placement attribute indicates the placement of the popover
and supports four values, which include top, bottom, left, and right.

You can also specify the trigger that will show the popover by setting the
data-trigger attribute's value. Popovers can be triggered when a user clicks or
hovers over the element or when the element has focus. You can also specify that
the trigger should be activated manually. The four options for the data-trigger
attribute are click, hover, focus, and manual.

As with tooltips, the data- API is an opt-in, so you would need to initialize the
popover plugin manually. In the following code, using jQuery, we'll ind all elements
on a page whose data-toggle attribute is set to popover and initialize the popover
plugin for each one:

<script type="text/javascript">

 $(document).ready(function () {

 $('[data-toggle="popover"]').popover();

 });

</script>

Using Bootstrap JavaScript Plugins

[88]

The popover plugin will appear similar to the following screenshot in your browser:

The accordion component
The accordion component is probably best known for FAQ pages or pages that
require a lot of content that is broken down into manageable parts. An accordion
is made up of a number of panel groups. Each panel group, in turn, has a heading
and body elements. To use the accordion component in our project, perform the
following steps:

1. To allow the panel to collapse when the user clicks on its heading, we need
to add a data-toggle attribute to an anchor <a> element inside the panel
heading element and set its value to collapse.

Chapter 4

[89]

2. We also need to specify the parent element of the panel by setting the
data-parent attribute's value to the ID of the parent panel group. Next,
set the anchor element's href attribute to the ID of the <div> element that
contains the content.

3. Finally, we also need to set the panel body element's class to panel-collapse
collapse. In the following code, we'll create an accordion component that
contains two panel groups. The irst panel group is automatically visible when
the page loads because we'll set its class to panel-collapse collapse in:

<div class="panel-group" id="accordion">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
 href="#questionOne">
 How do I order from you?

 </h4>
 </div>
 <div id="questionOne" class="panel-collapse collapse in">
 <div class="panel-body">
 Mauris egestas sem a ante accumsan tincidunt.
 Vivamus id nisl vulputate, placerat arcu et.
 sapien.
 </div>
 </div>
 </div>

 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
 href="#questionTwo">
 Do you ship internationally?

 </h4>
 </div>
 <div id="questionTwo" class="panel-collapse collapse">
 <div class="panel-body">
 Integer aliquet ligula eget elit faucibus, quis
 pretium justo iaculis. Quisque quis dolor
 volutpat, varius tellus eget, luctus nibh.
 Cras tempus tincidunt.
 </div>
 </div>
 </div>
</div>

Using Bootstrap JavaScript Plugins

[90]

4. The accordion should look similar to the following screenshot:

The carousel component
The carousel component is a user interface element, which you'll see on a number of
websites. It is essentially a slideshow that cycles through different elements, usually
images. The carousel component should be contained inside a <div> element with a
class name of carousel and a data-ride attribute with a value of carousel. To use
the carousel component in your project, perform the following steps:

1. The carousel component consists of an ordered list element, , that
renders as small circles in the browser and indicates which slide is currently
active. The markup for this element is as follows:

<ol class="carousel-indicators">

 <li data-target="#myCarousel" data-slide-to="0"
 class="active">

 <li data-target="#myCarousel" data-slide-to="1">

 <li data-target="#myCarousel" data-slide-to="2">

2. Next, another <div> element with a class name of carousel-inner needs
to be created. This element will contain the actual slides and their content.
The following markup creates such an element with one slide:

<div class="carousel-inner">

 <div class="item active">

Chapter 4

[91]

 <img src="@Url.Content("~/Images/slide1.jpg")"
 alt="First slide">

 <div class="container">

 <div class="carousel-caption">

 <h1>Unto all said together great in
 image.</h1>

 <p>Won't saw light to void brought fifth
was brought god abundantly for you waters life seasons he after
replenish beast. Creepeth beginning.</p>

 <p><a class="btn btn-lg btn-primary"
 href="#" role="button">Read more</p>

 </div>

 </div>

 </div>

</div>

3. Finally, to add arrows on either side of the carousel to indicate to the user
that they can navigate to the next slide, add the following markup to the
parent <div> element:

<a class="left carousel-control" href="#myCarousel" data-
slide="prev"></
span>

<a class="right carousel-control" href="#myCarousel" data-
slide="next"></
span>

4. The duration for which each slide should be shown can be set via the data-
interval attribute. In the following markup, we set the interval between
slides to be 10 seconds:

<div id="myCarousel" class="carousel" data-ride="carousel"
data-interval="10000">

5. As with all the other plugins, you also have a choice of initializing the plugin
and setting its options using JavaScript. In the following code, we'll initialize
the carousel and set the interval between slides to 10 seconds:

$('#myCarousel').carousel({

 interval: 10000

})

Using Bootstrap JavaScript Plugins

[92]

Summary
In this chapter, we examined various Bootstrap JavaScript plugins, how to initialize
them, and how to set their options using either the data- API or the programmatic
JavaScript approach.

In the next chapter, we'll explore how you can create your own ASP.NET MVC
helpers to reduce the amount of HTML markup you have to write in order to
create a number of Bootstrap elements and components.

Creating ASP.NET

MVC Bootstrap Helpers
ASP.NET MVC allows developers to create their own HTML helper methods either
by creating static or extension methods. In essence, an HTML helper is simply a
method that returns an HTML string.

HTML helpers enable you to use the same common block of markup on multiple
pages and make the code and markup in your pages easier to read and maintain.
This promotes the use of reusable code, and developers can also unit test their
helper methods.

In this chapter, we will cover the following topics:

• An overview of the built-in ASP.NET MVC HTML helpers

• Creating helpers using the @helper syntax

• Creating HTML helpers using static methods

• Creating HTML helper extension methods

• Creating luent HTML helpers
• Creating self-closing helpers

Built-in HTML helpers
An HtmlHelper is a method that renders HTML content inside a view. It is
intended to allow developers to reuse a common block of HTML markup across
multiple pages.

Creating ASP.NET MVC Bootstrap Helpers

[94]

ASP.NET MVC provides a range of standard, out-of-the-box HTML helpers.
For example, to produce the following HTML for a textbox with an ID and name
attribute of CustomerName, use the following code:

<input type="text" name="CustomerName" id="CustomerName">

You should use the TextBox helper as illustrated in the following code:

@Html.TextBox("CustomerName")

Majority of the built-in HTML helpers offer several overloaded versions. For
instance, to create a textbox and explicitly set its name and value attributes, you
should use the following overloaded TextBox helper method:

@Html.TextBox("CustomerName"","Northwind Traders")

Most built-in helpers also offer the option to specify HTML attributes for the element
that is generated by passing in an anonymous type. In the following example, we'll
create a textbox and set its style property using one of the overload methods:

@Html.TextBox("CustomerName","Northwind Traders", new {
style="background-color:Blue;" })

You can read more about the standard HTML helpers available in
ASP.NET MVC at http://bit.ly/MVCFormHelpers.

Creating a custom helper
As Bootstrap offers a variety of different components, it lends itself perfectly towards
the use of helpers. The simplest form of helper in ASP.NET MVC is the one that
you can create using the @helper syntax. A custom helper can include any HTML
or even Razor markup. To create a simple helper method to generate a Bootstrap
button, complete the following steps:

1. Create a new folder called App_Code inside the root folder of your website.

2. Create a new ile called BootstrapHelpers.cshtml inside the newly created
App_Code folder.

3. Add the following code to the BootstrapHelper.cshtml ile:
@helper PrimaryButtonSmall(string id,string caption)

{

 <button id="@id" type="button" class="btn btn-primary btn-sm">@
caption</button>

}

http://bit.ly/MVCFormHelpers

Chapter 5

[95]

This code employs the @helper syntax to create a new helper called
PrimaryButtonSmall. The helper accepts two parameters in order to specify
the id attribute of the button element as well as the button's caption element.
We've added appropriate Bootstrap classes to the button element in order to
render a blue primary button. Any custom helper must reside inside the
App_Code folder in order for ASP.NET MVC to recognize it inside your view.

Using a helper in a view
Let's use the helper we just created in the preceding section. To do this, open a view
in your site, and add the following code to the page:

@BootstrapHelpers.PrimaryButtonSmall("myButton","My New Button")

When you run the site and view the source of the page on which the helper is used,
you'll see that the helper generated the correct HTML markup to create the following
primary Bootstrap button:

<button class="btn btn-primary btn-sm" type="button" id="myButton">My
New Button</button>

You'll notice that although this approach works, it is not practical because it means
we would have to create an HTML helper for each style and size of button available.
A possible solution to this problem is to change our helper code in order to accept
a parameter with which the developer can specify which style and size the button
should be. To accomplish this, perform the following steps:

1. Open the BootstrapHelpers.cshtml ile that is located inside the
App_Code folder.

2. Replace the code inside the ile with the following code:
@helper Button(string style, string size, string caption, string
id)

{

 <button id="@id" type="button" class="btn btn-@style btn-@
size">@caption</button>

}

3. Open the view that uses the helper and add the following markup:

@BootstrapHelpers.Button("danger","lg","A Large
button","myLargeButton")

In the preceding step, we've updated our helper to accept two string
parameters to specify the size and style of the Bootstrap button. The problem
with this approach is that the developer still needs to know the name of the
style and size in order to render the correct button.

Creating ASP.NET MVC Bootstrap Helpers

[96]

Creating helpers using static methods
The easiest alternative to creating helpers using the @helper syntax we mentioned
earlier is to create static methods that simply return a string that contains an
HTML markup.

In order to accomplish this, we need to complete the following steps:

1. Create a new folder called Helpers inside the root folder of your project.
2. Add a new class to this folder called Enums.cs. This ile will contain all the

enumerators for our project.
3. Add the following code to the Enums.cs ile:

public class Enums

{

 public enum ButtonStyle

 {

 Default,

 Primary,

 Success,

 Info,

 Warning,

 Danger,

 Link

 }

 public enum ButtonSize

 {

 Large,

 Small,

 ExtraSmall,

 Normal

 }

}

4. Create a new class called ButtonHelper.cs in the Helpers folder.

5. Add a method called Button to the ButtonHelper class, and add the
following code to it:

public static MvcHtmlString Button(string caption, Enums.
ButtonStyle style, Enums.ButtonSize size)

{

 if (size != Enums.ButtonSize.Normal)

 {

 return new MvcHtmlString(string.Format("<button
type=\"button\" class=\"btn btn-{0} btn-{1}\">{2}</button>",
style.ToString().ToLower(), ToBootstrapSize(size), caption));

Chapter 5

[97]

 }

 return new MvcHtmlString(string.Format("<button
type=\"button\" class=\"btn btn-{0}\">{1}</button>", style.
ToString().ToLower(), caption));

}

6. Finally, add another method called ToBootstrapSize:

private static string ToBootstrapSize(Enums.ButtonSize size)

{

 string bootstrapSize = string.Empty;

 switch (size)

 {

 case Enums.ButtonSize.Large:

 bootstrapSize = "lg";

 break;

 case Enums.ButtonSize.Small:

 bootstrapSize = "sm";

 break;

 case Enums.ButtonSize.ExtraSmall:

 bootstrapSize = "xs";

 break;

 }

 return bootstrapSize;

}

The Button method we created earlier accepts three parameters in order
to set the button's caption, size, and style. We use the enumerator values
declared in the Enums.cs ile in order to list the available sizes and styles for
the button—this releases the developer from memorizing the exact Bootstrap
class names for each.

The Button method returns an MvcHtmlString object, which was introduced
in .NET 4. The MvcHtmlString object represents an HTML-encoded string,
which does not need to be encoded again. If we simply return a normal
string object, the actual HTML would be rendered inside the view instead
of the button.

The ToBootstrapSize method basically converts the ButtonSize value to a
valid Bootstrap class name that represents the size of the button. The result
will look similar to the following screenshot in the browser:

Creating ASP.NET MVC Bootstrap Helpers

[98]

Using the static method helper in a view
In order to use the static method helper we created earlier, open the view you intend
to use it in, and add the following Razor markup to it:

@ButtonHelper.Button("My Button",Enums.ButtonStyle.Warning, Enums.
ButtonSize.Normal)

In order to use the helper, you will need to include a reference to its namespace at
the top of your view by adding the following using statement:

@using Northwind.Web.Helpers

Creating helpers using extension

methods
If we want our helpers to behave in a manner similar to the built-in ASP.NET MVC
HTML helpers, we need to create an extension method. Extension methods are a
technique used to add new methods to an existing class.

Extension methods are a very powerful and intuitive approach
to add additional functionality to existing classes and can
help you in many ways. You can read more about extension
methods on MSDN at http://bit.ly/ExtMethods.

We'll create an extension method to the HtmlHelper class that is represented by a
view's HTML property by completing the following steps:

1. Start by adding a new class ile called ButtonExtensions.cs to the Helpers
folder in the root of your project.

2. Change the class type to static. Extension methods need to be declared
inside a static class.

3. Add a new method called BootstrapButton to the class. The irst parameter
of the method indicates which class the extension extends and must be
preceded with the this keyword.

4. The remaining parameters will be used to specify the caption, style, and size
of the button. The code for the method is as follows:

public static MvcHtmlString BootstrapButton(this HtmlHelper
helper, string caption, Enums.ButtonStyle style, Enums.ButtonSize
size)

{

 if (size != Enums.ButtonSize.Normal)

http://bit.ly/ExtMethods

Chapter 5

[99]

 {

 return new MvcHtmlString(string.Format("<button
type=\"button\" class=\"btn btn-{0} btn-{1}\">{2}</button>",
style.ToString().ToLower(), ToBootstrapSize(size), caption));

 }

 return new MvcHtmlString(string.Format("<button
type=\"button\" class=\"btn btn-{0}\">{1}</button>", style.
ToString().ToLower(), caption));

}

The BootstrapButton method is the same as the Button method in the
ButtonHelper class we created earlier, apart from the fact that it is an
extension to the HtmlHelper object.

Using the extension method helper in a view
As the BootstrapButton method is an extension method, using it involves opening
the view and adding the following markup to it:

@Html.BootstrapButton("My Button", Enums.ButtonStyle.Info, Enums.
ButtonSize.Normal)

Note that we're using the standard HTML helper to invoke the
BootstrapButton method.

Creating luent HTML helpers
Fluent interfaces is a technique used in software development to implement
an object-orientated API in such a manner that it provides more readable code,
and it is usually implemented using method chaining.

The term "luent interface" was irst used by Eric
Evans and Martin Fowler. If you'd like to learn more
about luent interfaces, read Martin Fowler's blog post
available at http://bit.ly/FluentInterfaces.

We'll create an HTML helper that will help us render Bootstrap alerts with a single
line of code. The helper will take a luent interface approach, which means that we'll
be able to render a dismissible, warning alert box using the following line of code:

@Html.Alert("This is a warning").Warning().Dismissible()

http://bit.ly/FluentInterfaces

Creating ASP.NET MVC Bootstrap Helpers

[100]

To create luent HTML helpers, complete the following steps:

1. Create a new subfolder called Alerts inside the Helpers folder in
your project.

2. Add a new interface to the Alerts folder called IAlertFluent. The interface
should implement the IHtmlString interface.

3. Add a new IAlertFluent property called Dismissible to the interface.
The code for the IAlertFluent interface should represent the following:

public interface IAlertFluent : IHtmlString

{

 IAlertFluent Dismissible(bool canDismiss = true);

}

4. Next, add a new interface to the Alerts folder called IAlert, and add four
IAlertFluent properties called Danger, Info, Success, and Warning.
These four properties will be used to set the Alert style as follows:

public interface IAlert : IAlertFluent

{

 IAlertFluent Danger();

 IAlertFluent Info();

 IAlertFluent Success();

 IAlertFluent Warning();

}

5. Next, we'll need to add a class that implements the IAlert interface.
Add a new class called Alert.cs to the Alerts folder.

6. Before we can implement the methods on the Alert class, we need to create
a class that will implement the IAlertFluent interface. Now, add a new
class called AlertFluent.cs to the Alerts folder.

7. The IAlertFluent interface only speciies one method, so we'll implement
it in the AlertFluent class and create a constructor that accepts an Alert
object as a parameter as follows:
public class AlertFluent : IAlertFluent

{

 private readonly Alert _parent;

 public AlertFluent(Alert parent)

 {

 _parent = parent;

 }

Chapter 5

[101]

 public IAlertFluent Dismissible(bool canDismiss = true)

 {

 return _parent.Dismissible(canDismiss);

 }

 public string ToHtmlString()

 {

 return _parent.ToHtmlString();

 }

}

8. Open the Enum.cs ile, and add a new enumerator called AlertStyle:

public enum AlertStyle

{

 Danger,

 Info,

 Success,

 Warning,

}

9. Open the Alert.cs ile, and add a local AlertStyle enum ield
called _style, a Boolean ield called _dismissible, and a string
called _message.

10. Next, implement each of the methods that the IAlert interface speciies.
Each method will set the _style property and return a new instance of
the AlertFluent object. A reference to the Alert class is passed to the
AlertFluent constructor as a parameter. The code for each is indicated
as follows:

public IAlertFluent Danger()

{

 _style=Enums.AlertStyle.Danger;

 return new AlertFluent(this);

}

public IAlertFluent Info()

{

 _style = Enums.AlertStyle.Info;

 return new AlertFluent(this);

}

public IAlertFluent Success()

{

 _style = Enums.AlertStyle.Success;

 return new AlertFluent(this);

}

Creating ASP.NET MVC Bootstrap Helpers

[102]

public IAlertFluent Warning()

{

 _style = Enums.AlertStyle.Warning;

 return new AlertFluent(this);

}

11. The Dismissible method works in a similar fashion; it sets the
local _dismissible ield and returns a new instance of the
AlertFluent object:
public IAlertFluent Dismissible(bool canDismiss = true)

{

 this._dismissible = canDismiss;

 return new AlertFluent(this);

}

12. Finally, we need to implement the ToHtmlString property. This property is
speciied in the IHtmlString interface. We'll use the TagBuilder object to
construct the HTML markup for the Bootstrap Alert class. The code for the
ToHtmlString method is as follows:

public string ToHtmlString()

{

 var alertDiv = new TagBuilder("div");

 alertDiv.AddCssClass("alert");

 alertDiv.AddCssClass("alert-" + _style.ToString().ToLower());

 alertDiv.InnerHtml = _message;

 if (_dismissible)

 {

 alertDiv.AddCssClass("alert-dismissible");

 alertDiv.InnerHtml += AddCloseButton();

 }

 return alertDiv.ToString();

}

13. The preceding code creates a new <div> element and adds the necessary
Bootstrap Alert classes to it. It then checks whether the alert should be
dismissible, and if so, adds the appropriate class and generates the HTML
to show a close button by calling the AddCloseButton method:

private static TagBuilder AddCloseButton()

{

 var closeButton = new TagBuilder("button");

 closeButton.AddCssClass("close");

Chapter 5

[103]

 closeButton.Attributes.Add("data-dismiss", "alert");

 closeButton.InnerHtml = "×";

 return closeButton;

}

14. The AddCloseButton method also uses the TagBuilder object to build up
the HTML needed in order to render a close button inside the Bootstrap
Alert class.

Using the luent HTML helper in a view
In order to use the luent HTML helper inside a view, we need to add one inal
ile called AlertHelper.cs to the Alerts folder. This class will add an extension
method to the HtmlHelper object in order to render a Bootstrap Alert class. Add a
new method called Alert to the class. This method should return an Alert object,
and it will accept two parameters. The irst parameter must be preceded with the
this keyword and is used to indicate which class the extension will extend. The
second parameter will be the actual text that will be displayed inside the Bootstrap
Alert class.

The code for the Alert class is as follows:

public static class AlertHelper

{

 public static Alert Alert(this HtmlHelper html,string message)

 {

 return new Alert(message);

 }

}

Open a view and add the following markup to render a dismissible Bootstrap alert
that will display a danger-styled message:

@Html.Alert("Core meltdown imminent").Danger().Dismissible()

The alert will look similar to the following screenshot in the browser:

Creating ASP.NET MVC Bootstrap Helpers

[104]

Creating self-closing helpers
Self-closing helpers are helpers that can contain HTML and Razor markup.
The built-in @Html.BeginForm() helper is an example of this type of helper.

In order to create this type of HTML helper, we'll need to create a helper class that
implements the IDisposable interface. Using the IDisposable interface, we can
write the element's closing tags when the object is disposed.

The Bootstrap Panel component is a perfect candidate for such a helper. To create
the helper, we'll have to complete the following steps:

1. Create a new subfolder called Panels inside the Helpers folder in
your project.

2. Open the Enums.cs ile, and add a new item called PanelStyle:

public enum PanelStyle

{

 Default,

 Primary,

 Success,

 Info,

 Warning,

 Danger

}

3. Add a new class ile called Panel.cs to the Panels folder.

4. Add a new private read-only ield to the class called _writer.

5. Create a constructor for the Panel class that accepts three parameters.
The irst is a reference to the HtmlHelper object, the second speciies the
title of the panel, and the third indicates the style of the panel.

6. Add the following code to the Panel class's constructor method:

public Panel(HtmlHelper helper, string title, Enums.PanelStyle
style = Enums.PanelStyle.Default)

{

 _writer = helper.ViewContext.Writer;

 var panelDiv = new TagBuilder("div");

 panelDiv.AddCssClass("panel-" + style.ToString().ToLower());

 panelDiv.AddCssClass("panel");

 var panelHeadingDiv = new TagBuilder("div");

 panelHeadingDiv.AddCssClass("panel-heading");

Chapter 5

[105]

 var heading3Div = new TagBuilder("h3");

 heading3Div.AddCssClass("panel-title");

 heading3Div.SetInnerText(title);

 var panelBodyDiv = new TagBuilder("div");

 panelBodyDiv.AddCssClass("panel-body");

 panelHeadingDiv.InnerHtml = heading3Div.ToString();

 string html = string.Format("{0}{1}{2}", panelDiv.
ToString(TagRenderMode.StartTag), panelHeadingDiv, panelBodyDiv.
ToString(TagRenderMode.StartTag));

 _writer.Write(html);

}

In this code, we've set the _writer ield to the Writer property of the
HtmlHelper objects' ViewContext property. By utilizing this property,
we'll be able to write HTML to the current view.

We then built up the panel element's HTML markup using the TagBuilder
object and inally, sent the result to the _writer object to output. Note that
we used the overloaded ToString method of TagBuilder in order to specify
that it should only generate the starting tags of the <div> element.

The two <div> elements with class names panel and panel-body will be
closed in the Panel class's Dispose method, which is implemented in the
following manner:

 public void Dispose()

 {

 _writer.Write("</div></div>");

 }

Using the self-closing helper in a view
To use the helper we created earlier in our view, we'll use the C# using keyword.
The using keyword restricts the scope of an object and thus, works well with the
IDisposable interface. In essence, as soon as the helper has inished rendering its
HTML output, the Dispose method will automatically be invoked, thus closing the
last two <div> element tags.

To use the helper in a view, use the following markup:

@using (Html.Panel("Title", Enums.PanelStyle.Success))
{
 <p>Hello World</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>
}

Creating ASP.NET MVC Bootstrap Helpers

[106]

The helper will generate the required HTML in order to show the following panel in
the browser:

Summary
In this chapter, we explored how you can decrease the amount of markup in your
views, using HTML helpers. We also looked at how you can write helpers that will
enable developers who are not familiar with the Bootstrap framework to use helpers
to add styled components to their views.

In the next chapter, we'll dive into generating scaffolded views that are correctly
styled using the Bootstrap styles and layouts.

Creating T4 Templates to

Scaffold Bootstrap Views
The ASP.NET MVC framework relies on scaffolding to generate most of what
you need for an ASP.NET MVC including views and controllers. The standard
scaffolding templates would sufice for most projects, but there will be cases
where you would require iner grain control over the code that is generated.

Visual Studio uses T4 templates internally to generate many of the item
templates available, and developers are also able to harness this functionality
in their own projects.

In this chapter, we will explore the following topics:

• An overview of scaffolding

• T4 templates

• Tools available for making the use of T4 easier

• A brief overview of the T4 syntax

• Customizing the generated code for controllers and views

• Creating a custom scaffolder

An overview of scaffolding
Scaffolding is a system used by many development frameworks, including ASP.NET
MVC, to generate a basic view and controller code for database operations such as
create, read, update, and delete.

Creating T4 Templates to Scaffold Bootstrap Views

[108]

Visual Studio 2013 already includes code generators for ASP.NET MVC and Web
API projects, and using these built-in scaffolding templates can drastically reduce
the amount of time you spend on creating standard views and controller actions.
When adding a standard controller to an ASP.NET MVC project in Visual Studio
2013, you're already using scaffolding, and this is indicated by the fact that the dialog
window used to add a new controller's caption is Add Scaffold:

T4 templates
T4 stands for Text Template Transformation Toolkit, which is Microsoft's
template-based text-generation framework. T4 is a combination of control logic and
text blocks, which can generate any type of text ile, including C# or VB source iles.

The T4 code generator is built into Visual Studio and is used to generate the
built-in ASP.NET MVC templates, including the standard MVC and Web
API controller templates.

Chapter 6

[109]

Oleg Sych wrote a number of very informative blog posts on how
to use T4 templates and how to get optimal results by using it in
your own development project. To read more, you can visit his
blog at http://bit.ly/OlegSychT4.

Unfortunately, Visual Studio does not provide syntax highlighting or intelliSense
support when editing T4 templates, but there are free tools available that can add
these features to Visual Studio for you.

T4 tools
Since Visual Studio does not provide T4 intelliSense by default, we'll need to install
a third-party extension to enable this functionality for us. Fortunately, there are two
free alternatives available. These are as follows:

• The Devart T4 editor for Visual Studio (http://bit.ly/DevArtT4)

• The tangible T4 editor (http://bit.ly/TangibleT4)

Both these extensions provide similar functionalities, but for the T4 examples in
this book, we'll use the tangible T4 editor.

Another free extension that is vital in making the creation of T4 templates much
easier is the SideWafle extension for Visual Studio. SideWafle will add a number
of extremely-useful item templates to Visual Studio, which we'll use to build
our own ASP.NET MVC scaffolded views. You can download SideWafle from
http://www.sidewaffle.com/.

SideWafle not only provides item templates for T4, but also offers a
range of project and item templates as well as a host of very useful
snippets. It is an actively-maintained open source project on GitHub
and an indispensable tool for any .NET developer.

The T4 syntax
T4 templates have a very speciic syntax, which can appear somewhat daunting,
but once you get used to it, it is relatively simple to understand and use. T4 uses
three distinct tags to indicate code blocks.

http://bit.ly/OlegSychT4
http://bit.ly/DevArtT4
http://bit.ly/TangibleT4
http://www.sidewaffle.com/

Creating T4 Templates to Scaffold Bootstrap Views

[110]

The irst code block is <#= #> and is used to execute the code within the tag and
will return a text result. For example, in the following markup, the code will return
the value in the ViewName variable inside the T4 template:

<#= ViewName #>

The <# #> code block executes the code inside the tag and returns a void result.
For example, the following markup loops through every item in a collection and
produces the item's Total property followed by a carriage return:

<#foreach(var item in Orders){ #>

 <#= item.Total + Environment.NewLine #>

<# } #>

The <#+ #> code block is used to deine reusable methods, which can be called from
inside the T4 template. For example, the following markup deines a method called
TypeName and returns the full name of the object:

<#+ public string Typename(obj){ return obj.GetType().FullName; } #>

To use the method, you simply need to call it inside your template ile, as illustrated
in the following code:

<#= Typename(myObj) #>

Customizing the generated code

for controllers
When adding a new controller class to your ASP.NET MVC project, the Add New
Scaffolded Item dialog is shown, and you have a choice between three different
types of controllers to add:

• MVC 5 Controller – Empty

• MVC 5 Controller with read/write actions

• MVC 5 Controller with views, using Entity Framework

Chapter 6

[111]

Each of these items generates boilerplate code, which you can customize afterwards.
However, let's assume that all our projects' controller classes need a constructor that
accepts a parameter. Using the standard items, we would have to manually add the
constructor for each controller in our project.

Fortunately, we are able to override the generated output for the controllers,
because in essence, they are nothing more than T4 templates.

To customize the output of the MVC 5 Controller – Empty item, perform the
following steps:

1. Right-click on your ASP.NET MVC project's name inside Visual Studio,
and navigate to Add | New Item.

2. Navigate to Visual C# | Web | SideWafle and select the ASP.NET
Scaffolding T4 iles item template and click on Add:

Creating T4 Templates to Scaffold Bootstrap Views

[112]

3. The item template will add a folder called CodeTemplates inside your
project. Inside this folder, it will create 13 subfolders that contain .t4 iles,
as shown in the following screenshot:

4. Double-click on the Controller.cs.t4 ile inside the
MvcControllerEmpty folder.

5. The T4 template for the empty MVC 5 controller will open inside
Visual Studio. You'll notice that it contains a combination of C# code
and T4 markup.

6. Keep the markup in the template as is, but add the following code above
the Index method:

private readonly ApplicationDbContext _context;

private readonly ICurrentUser _currentUser;

public <#= ControllerName #>(ApplicationDbContext context,
ICurrentUser currentUser)

{

 _context = context;

 _currentUser = currentUser;

}

Chapter 6

[113]

7. In the preceding code, we created a constructor for the controller class, and
using T4 speciies that the name of the constructor should be the same as the
controller name. The ControllerName variable is declared at the top of the
template ile and is automatically passed into the template as follows:
<#@ parameter type="System.String" name="ControllerName" #>

8. Next, add the following code using declarations just above the namespace:
using Northwind.Data.Models;

using Northwind.Infrastructure;

9. The using statements will ensure that we have the correct references we
need when generating a new controller.

10. Save the Controller.cs.t4 ile.
11. Right-click on the Controllers folder inside the Solution Explorer window

and navigate to Add | Controller.

12. The standard Add Scaffold dialog will be shown; select MVC 5
Controller – Empty and click on Add.

13. You will be prompted to enter a name for the new controller:

14. Click on Add and Visual Studio will scaffold the new controller.
The resulting class will now have a constructor that accepts the
ApplicationDbContext and ICurrentUser parameters as follows:

using System.Web.Mvc;

using Northwind.Data.Models;

using Northwind.Infrastructure;

namespace Northwind.Web.Controllers

{

 public class SuppliersController : Controller

 {

 private readonly ApplicationDbContext _context;

Creating T4 Templates to Scaffold Bootstrap Views

[114]

 private readonly ICurrentUser _currentUser;

 public SuppliersController(ApplicationDbContext
 context, ICurrentUser currentUser)
 {
 _context = context;
 _currentUser = currentUser;
 }

 //
 // GET: /Suppliers/
 public ActionResult Index()
 {
 return View();
 }
 }
}

Customizing the generated code for views
As with controllers, the scaffolding for views can also be customized. In our example
project used throughout this book, our views followed a consistent look. Each page
has a page header followed by a breadcrumb component to indicate to the user
which page is currently being viewed.

We always want to follow this design when adding a new page to our site, and
one method of enforcing this is to either override the default scaffolder for views
or add our own. We'll create a T4 template that will generate a standard, vertical
Bootstrap form that already contains a page header and a breadcrumb component.
To accomplish this, perform the following steps:

1. Open the MvcView folder inside the CodeTemplates folder.

2. Right-click on the Create.cs.t4 ile and select Copy.

3. Right-click on the MvcView folder and select Paste.

4. The ile will be copied as Create.cs – Copy.t4; rename it to
VerticalForm-Bootstrap.cs.t4.

5. Double-click on VerticalForm-Bootstrap.cs.t4 to open it.

6. Add the following HTML markup before the @using
(Html.BeginForm()) line:

<div class="container">

 <div class="page-header">

 <h1><#= ViewDataTypeShortName #> </h1>

 </div>

Chapter 6

[115]

 <ol class="breadcrumb">

 @Html.ActionLink("Home", "Index", "Home")

 <li class="active"><#= ViewDataTypeShortName #>

 <div class="row clearfix">

 <div class="col-md-12">

7. The preceding markup will render a page header and a breadcrumb
component above the form. The form will reside within a grid
column, inside a Bootstrap row's <div> element. Note that we use the
ViewDataTypeShortName variable, which contains the short name of the
object used as the model for the view.

8. Next, remove the <div class="form=horizontal"> line as well as the <h4>
and <hr> elements in the line below <div>.

9. Remove all <div class="form-group"> and <div class="col-md-10">
elements from the template. Make sure that you also remove all their
closing </div> tags.

10. Remove the new { @class = "control-label col-md-2" }
HTML attribute settings from all the @Html.LabelFor methods.

11. Lastly, we need to close all the <div> elements that were added to
the top of the template. Add three closing </div> tags after the last
@Html.ActionList line.

With the template markup in place, we can create a new scaffolded view based on
this by completing the following steps:

1. Open a controller class. In this example, we'll use the
SuppliersController.cs ile.

2. Right-click inside the Index method and select Add View…:

Creating T4 Templates to Scaffold Bootstrap Views

[116]

3. This will display the Add View dialog.

4. Enter a view name and select the VerticalForm-Bootstrap template from the
list of templates in the Template combobox. Any custom T4 template that
you'll create will automatically be listed inside the templates list.

5. Select your model class. In this example, we'll use the Supplier model.

6. The Data context class ield should be automatically selected; if not, select it
from the list of data context classes. Click on Add:

7. Visual Studio will use our custom template to scaffold a view, which will
contain all the markup we've added earlier.

Chapter 6

[117]

8. The result should be a vertical or standard Bootstrap view, as illustrated in
the following screenshot:

Creating T4 Templates to Scaffold Bootstrap Views

[118]

Creating a custom scaffolder extension
If you need more control on how the code for your views or controllers is scaffolded,
you need to create a new scaffolding extension for Visual Studio. This extensibility
enables developers to add their own scaffolding items to the Add Scaffold dialog
window, as illustrated in the following screenshot:

To create such a custom scaffolder, we'll create a new basic scaffolder project.
This project template is installed by the SideWafle extension and adds all the
iles necessary to create a custom scaffolder.

Perform the following steps to create your own custom scaffolder project:

1. Create a new project inside Visual Studio.
2. Select the Basic Scaffolder project template by navigating to

Extensibility | SideWafle, as shown in the following screenshot:

Chapter 6

[119]

3. The project template will create two new projects: BootstrapBasicForm and
BootstrapBasicFormExtension. One contains the code for the extension and
another contains the .vsixmanifest ile for the project:

Creating T4 Templates to Scaffold Bootstrap Views

[120]

4. Open the BootstrapBasicFormExtension project and double-click on the
source.extension.vsixmanifest ile.

5. Visual Studio will open the ile in a visual editor in which you can set a
range of properties for the extension. For this example, keep everything as is.

6. Open the CustomCodeGeneratorFactory.cs ile in the
BootstrapBasicForm project.

7. At the top of this class, a new CodeGeneratorInformation object
called _info is declared. Change it to the following code:

private static CodeGeneratorInformation _info = new
CodeGeneratorInformation(

 displayName: "Bootstrap Basic Form",

 description: "Basic vertical-styled Bootstrap Form",

 author: "Pieter",

 version: new Version(1, 0, 0, 0),

 id: typeof(CustomCodeGenerator).Name,

 icon: ToImageSource(Resources._TemplateIconSample),

 gestures: new[] { "View" },

 categories: new[] { Categories.MvcView, "Bootstrap" });

8. The gestures parameter indicates when the custom scaffold item will be
shown. If the setting is set to View, it will only show our custom template
when the user adds a new view in Visual Studio.

9. The categories parameter is used to set where the template will be
shown in the Add Scaffold dialog. Categories are shown on the left-hand
side of the Add Scaffold dialog. You can add your own categories or use
the built-in categories.

10. This is all we need to do in the CustomCodeGeneratorFactory class.
Create a new class called ServiceProviderExtensions.cs and add
the following code to it:

internal static class ServiceProviderExtensions

{

 public static TService GetService<TService>(this
 IServiceProvider provider) where TService : class

 {

 if (provider == null)

 {

 throw new ArgumentNullException("provider");

 }

 return
 (TService)provider.GetService(typeof(TService));

 }

Chapter 6

[121]

 public static bool IsServiceAvailable<TService>(this
 IServiceProvider provider) where TService : class

 {

 if (provider == null)

 {

 throw new ArgumentNullException("provider");

 }

 return GetService<TService>(provider) != null;

 }

}

11. Save and close the ile, and open the CustomViewModel.cs ile. This ile is
located inside the UI folder and is used to pass data between UIs, where the
user will choose the settings and our code.

12. Add a new property called ProjectDbContexts to it. This property will
return all valid DbContext objects in the project. The code for this property
will be as follows:

public IEnumerable<ModelType> ProjectDBContexts

{

 get

 {

 ICodeTypeService codeTypeService =
 (ICodeTypeService)Context

 .ServiceProvider.GetService(typeof(ICodeTypeService));

 return codeTypeService

 .GetAllCodeTypes(Context.ActiveProject)

 .Where(codeType =>
 codeType.IsValidDbContextType())

 .Select(codeType => new ModelType(codeType));

 }

}

13. Next, add three properties called Title, ControllerName, and ViewName to
the class:

public string Title { get; set; }

public string ControllerName { get; set; }

public string ViewName { get; set; }

14. Lastly, add a ModelType property called SelectedDbContext:

public ModelType SelectedDbContext { get; set; }

15. Save and close the ile.

Creating T4 Templates to Scaffold Bootstrap Views

[122]

16. Double-click on the SelectModelWindow.xaml ile to open the XAML
form designer.

17. This form will be used to prompt the user to select the model and
DbContext that is to be used to scaffold a view as well as to enter
the page title, view, and controller names.

18. The XAML for the form is as follows:

<Window x:Class="BasicScaffolder1.UI.SelectModelWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d" Height="233" Width="511" Title="Model Types">
 <Grid>
 <Label Content="Choose a Model Type:"
 HorizontalAlignment="Left" Margin="36,15,0,0"
 VerticalAlignment="Top"/>
 <ComboBox HorizontalAlignment="Left"
 Margin="169,19,0,0"
 VerticalAlignment="Top"
 ItemsSource="{Binding ModelTypes}"
 DisplayMemberPath="DisplayName"
 SelectedItem="{Binding SelectedModelType,
 Mode=OneWayToSource}"
 Width="311" TabIndex="1"/>
 <Button Content="Add" IsDefault="True"
 HorizontalAlignment="Left" Margin="317,171,0,0"
 VerticalAlignment="Top" Width="75"
 RenderTransformOrigin="-0.187,0.75"
 Click="Button_Click" TabIndex="5"/>

 <Button Content="Cancel" IsCancel="True"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Width="75" Margin="405,171,0,0" TabIndex="6"/>

 <TextBox x:Name="ControllerNameTextbox"
 HorizontalAlignment="Left" Height="23"
 Margin="169,103,0,0" TextWrapping="Wrap"
 Text="{Binding ControllerName}"
 VerticalAlignment="Top" Width="311" TabIndex="3"/>

 <Label Content="View Name"
 HorizontalAlignment="Left" Margin="36,75,0,0"
 VerticalAlignment="Top"
 RenderTransformOrigin="-0.342,0.269" Width="98"/>

Chapter 6

[123]

 <TextBox x:Name="TitleNameTextbox"
 HorizontalAlignment="Left" Height="23"
 Margin="169,131,0,0" TextWrapping="Wrap"
 VerticalAlignment="Top" Width="311" Text="{Binding
 Title}" TabIndex="4"/>

 <Label Content="Controller Name"
 HorizontalAlignment="Left" Margin="36,103,0,0"
 VerticalAlignment="Top"
 RenderTransformOrigin="0.211,-0.154"/>

 <TextBox x:Name="ViewNameTextbox" Text="{Binding
 ViewName}" HorizontalAlignment="Left" Height="23"
 Margin="169,75,0,0" TextWrapping="Wrap"
 VerticalAlignment="Top" Width="311" TabIndex="2"/>

 <Label Content="Title" HorizontalAlignment="Left"
 Margin="36,131,0,0" VerticalAlignment="Top"/>

 <ComboBox HorizontalAlignment="Left"
 Margin="169,46,0,0" VerticalAlignment="Top"
 Width="311" ItemsSource="{Binding
 ProjectDBContexts}" SelectedItem="{Binding
 SelectedDbContext, Mode=OneWayToSource}"
 DisplayMemberPath="DisplayName"/>

 <Label Content="DBContext"
 HorizontalAlignment="Left" Margin="36,46,0,0"
 VerticalAlignment="Top" Width="128"/>

 </Grid>
</Window>

19. The preceding XAML markup will bind the form controls to the
CustomViewModel class. The inal design for the form should resemble
the following screenshot:

Creating T4 Templates to Scaffold Bootstrap Views

[124]

20. Open the CustomCodeGenerator.cs ile again and replace the
GenerateCode method with the following code:

public override void GenerateCode()

{

 var codeType = _viewModel.SelectedModelType.CodeType;

 var title = _viewModel.Title;

 var controllerName = _viewModel.ControllerName;

 var viewName = _viewModel.ViewName;

 IEntityFrameworkService efService =
 Context.ServiceProvider.GetService<IEntityFrameworkServi
ce>();

 ModelMetadata efMetadata =
 efService.AddRequiredEntity(Context, _viewModel.
SelectedDbContext.TypeName, codeType.FullName);

 var parameters = new Dictionary<string, object>()

 {

 {

 "ModelType", codeType

 },

 {

 "ControllerName", controllerName

 },

 {

 "ViewName", viewName

 },

 {

 "Title", title

 },

 {

 "ModelMetadata",efMetadata

 }

 };

 ProjectItem folder = Context.ActiveProjectItem;

 if (folder.Kind ==
 EnvDTE.Constants.vsProjectItemKindPhysicalFolder)

 {

 var folderName = folder.Name;

 var path = "Views\\" + folderName + "\\" + viewName;

 AddFileFromTemplate(Context.ActiveProject, path,

 "CustomTextTemplate",

Chapter 6

[125]

 parameters,

 skipIfExists: false);

 }

}

21. In the preceding code, we added the values captured in the form by the user
to a parameters collection. We also collected all the metadata about the
selected object by using IEntityFrameworkService. This service expects
a context type name as one of the parameters for its AddRequiredEntity
method, so we'll pass in the name of the DbContext object the user selected
on the form.

22. We'll then check whether the user is adding the scaffolded item to a folder, and
we'll make a small assumption that the parent folder of the selected folder will
be the Views folder. We'll then invoke the AddFileFromTemplate method.

23. With the UI and view model in place, open the CustomTextTemplate.cs.t4
ile.

24. The top part of the template ile speciies the template language, in this
case, C# as well as the extension that the template needs to output.
Since we're going to scaffold a view, this should be .cshtml.

25. We'll also declare all the variables names that will be passed into the template
at the top. The following should be added to the top of the template ile:
<#@ template language="C#" #>

<#@ output extension=".cshtml" #>

<#@ assembly name="System.Core" #>

<#@ assembly name="EnvDTE" #>

<#@ include file="Imports.include.t4" #>

<#@ parameter name="ModelType" type="EnvDTE.CodeType" #>

<#@ parameter name="Title" type="System.String" #>

<#@ parameter name="ControllerName" type="System.String" #>

<#@ parameter name="ViewName" type="System.String" #>

<#@ parameter name="ModelMetadata" type="Microsoft.AspNet.
Scaffolding.Core.Metadata.ModelMetadata" #>

26. The rest of the T4 markup for the template is as follows:

@model <#= ModelType.Namespace.FullName #>.<#= ModelType.Name #>

@{

 ViewBag.Title = "<#= Title #>";

Creating T4 Templates to Scaffold Bootstrap Views

[126]

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="container">

 <div class="page-header">

 <h1><#= Title #> </h1>

 </div>

 <ol class="breadcrumb">

 @Html.ActionLink("Home", "Index", "Home")

 <li class="active"><#= Title #>

 <div class="row clearfix">

 <div class="col-md-12">

 @using (Html.BeginForm("<#= ViewName #>", "<#=
 ControllerName #>", FormMethod.Post, new { role
 = "form" }))

 {

 @Html.AntiForgeryToken()

 @Html.ValidationSummary(true)

 <#

 foreach (PropertyMetadata property in
 ModelMetadata.Properties)

 {

 #>

 <div class="form-group">

 @Html.LabelFor(model => model.<#=
 property.PropertyName #>)

 </div>

 <#

 }

 #>

 </div>

 </div>

Chapter 6

[127]

27. At this point, you are ready to test the custom scaffold item by running your
project. An experimental instance of Visual Studio will start; open an existing
ASP.NET MVC project and right-click on a subfolder inside the Views folder
and navigate to Add | View…. You should see your custom scaffold item in
the Bootstrap category, and when you double-click on it, the custom form we
created should be shown.

By clicking on Add, the new view will be created inside the selected folder
and the variables inside the template will be populated with the values
entered on the form.

Summary
In this chapter, we explored the possibilities of how to customize the built-in
ASP.NET MVC scaffolding templates, how to add your own ones, and even
how to build your own advanced scaffolder with its own custom UI.

In the next chapter, we'll further investigate how to convert a standard HTML
web template into a reusable ASP.NET MVC Visual Studio project.

Converting a Bootstrap

HTML Template into a
Usable ASP.NET

MVC Project
One of the major beneits of using Bootstrap is the wide variety of resources available
on the Internet. The web development community embraced Bootstrap, and you'll
ind tons of valuable templates, snippets, and advice on using Bootstrap.

By combining a predesigned Bootstrap template and ASP.NET MVC, you can save a
lot of time without having to worry about site layout or design.

In this chapter, we will cover the following topics:

• Why we use prebuilt HTML templates and how they will save time

• Building the master layout

• Adding speciic page views
• Including charts in your views

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[130]

Working with prebuilt HTML templates
It is a well-known fact that most developers are not necessarily good designers.
We prefer to work on the backend, building great-performing and intelligent
software, and sometimes, we tend to think of the user interface as an afterthought.

By using a predesigned HTML Bootstrap template, we can give our users an intuitive
and well-designed user interface that was designed by a professional designer. If the
design was based on Bootstrap, the developer is already familiar with most of the
CSS class names, components, and plugins, and does not have to relearn anything.

The Web offers an assortment of free and premium Bootstrap templates.
ThemeForest (www.themeforest.net) provides a mind-boggling array of
different premium site styles and designs.

For our example in this chapter, we'll use the free SB Admin 2 template designed
by Start Bootstrap (www.startbootstrap.com). The SB Admin 2 template is an
admin theme that uses Bootstrap 3 and is ideal for a backend administration or
more complex style web application. The theme looks like the following screenshot:

www.themeforest.net
www.startbootstrap.com

Chapter 7

[131]

Before we can build an ASP.NET MVC site with the template, we need to download
the source iles by completing the following steps:

1. Navigate to http://startbootstrap.com/sb-admin-v2 and click on the
Download button to download a zip archive that contains all the necessary
HTML, CSS, and JavaScript iles.

2. Extract the iles to a folder on your local hard drive; you'll notice that the
archive contains the familiar Bootstrap folders:

 ° css

 ° font-awesome

 ° fonts

 ° js

3. The archive also contains a number of HTML iles that illustrate various page
and component layouts of the template, as shown in the following screenshot:

http://startbootstrap.com/sb-admin-v2

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[132]

Creating the ASP.NET MVC project
To create a new ASP.NET MVC project, perform the following steps:

1. In Visual Studio, create a new ASP.NET Web Application project, as shown
in the following screenshot:

2. In the New ASP.NET Project dialog, select the Empty template, check the
MVC checkbox, and click on the OK button.

Chapter 7

[133]

3. Visual Studio will create a default empty MVC project. Right-click on
the project name and navigate to Add | New Folder. Create the following
four folders:

 ° css

 ° font-awesome

 ° fonts

 ° js

4. Add the following .css iles from the SB Admin source css folder to the
css folder inside your project:

 ° bootstrap.css

 ° sb-admin.css

5. Add the font-awesome.css ile inside the SB Admin source's
font-awesome\css folder to the css folder in your project.

6. Add all the iles inside the SB Admin source's fonts and
font-awesome\fonts folder to the fonts folder inside your project.

7. Add the following iles from the SB Admin source's js folder to the js
folder in your project:

 ° bootstrap.js

 ° sb-admin.js

Creating the master layout
We've added the CSS, JavaScript, and Font iles needed to create the master layout
ile for our project. Next, we need to create a home controller as well as a master
layout ile. To do this, complete the following steps:

1. Right-click on the Controllers folder and navigate to Add | Controller….

2. Select MVC 5 Controller – Empty from the Add Scaffold dialog window
and click on Add.

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[134]

3. Enter HomeController in the Controller name textbox in the Add Controller
dialog window, and click on Add.

4. Next, right-click on the Views folder in your project and navigate to
Add | New Folder. Name the folder Shared.

5. Right-click on the newly-created Shared folder and navigate to
Add | MVC 5 Layout Page (Razor).

6. In the Specify Name for Item dialog, type _Layout in the Item name
textbox and click on OK.

7. Open the blank.html ile in the SB Admin source iles and copy its
contents to the _Layout.cshtml ile.

8. Change the <head> tag to the following code:

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">

 <title>Start Bootstrap - SB Admin Version 2.0 ::
 @ViewBag.Title</title>

 <link href="@Url.Content("~/css/bootstrap.css")"
 rel="stylesheet">

 <link href="@Url.Content("~/css/font-awesome.css")"
 rel="stylesheet">

 <link href="@Url.Content("~/css/sb-admin.css")"
 rel="stylesheet">

</head>

Chapter 7

[135]

9. In the preceding markup, we used the Url.Content helper to map a virtual
path to the .css iles in our project.

10. Add the following code just above the closing </body> tag:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>

<script src="@Url.Content("~/js/bootstrap.js")"></script>

<script src="@Url.Content("~/js/sb-admin.js")"></script>

@RenderSection("scripts", false)

11. In the preceding code, we added a reference to the jQuery library that
is hosted on a Google Content Delivery Network (CDN). We also used
the Url.Content helper again to map a virtual path to the required
JavaScript iles and used the @RenderSection helper to specify a
section called scripts.

12. Next, you'll notice that the page is divided into three
distinguishable elements:

 ° A <div> element whose ID is set to wrapper

 ° A <nav> element

 ° A <div> element with an ID of page-wrapper

13. Leave the <nav> and <div id="wrapper"> elements as is, and replace
all markup inside the <div id="page-wrapper"> element with the
@RenderBody() method.

14. The master layout is now complete; next, we'll need to add a view for
the Index action on the home controller.

Adding a view for the home controller
We need to create a view for the home controller's Index action in order to test our
template. Complete the following steps to accomplish this:

1. Open the HomeController.cs ile, right-click inside the Index method,
and select Add View… from the context-menu.

2. In the Add View dialog, set the View name textbox to Index and the
Template combobox to Empty (without model).

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[136]

3. Tick the Use a layout page checkbox, and select the _Layout.cshtml ile we
created earlier as the layout page. Click on Add.

4. An Index.cshtml ile will be created inside the Views\Home folder.

5. Add the following markup to the view:

@{

 ViewBag.Title = "Index";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="row">

 <div class="col-lg-12">

 <h1 class="page-header">Blank</h1>

 </div>

</div>

6. Run your project, and you should see the home view and layout in your
browser. Note that the left-hand side menu will be expanded to display all
items, as shown in the following screenshot:

Chapter 7

[137]

Adding the menu plugin library
Currently, the left-hand side menu displays all the items. We need the menu to
expand only when the user clicks on the appropriate menu item. To enable this,
we'll need to add a reference to the metisMenu jQuery plugin to our master layout
page. For this, perform the following steps:

1. Add a subfolder called plugins to the js folder in your project.
2. Add a new folder inside the plugins folder called metisMenu.

3. Add the jquery.metisMenu.js ile inside the SB Admin source iles'
js\plugins\metisMenu folder to the plugins\metisMenu folder inside
your project.

4. Next, open the _Layout.cshtml ile inside the Views\Shared folder.

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[138]

5. Add a reference to the metisMenu plugin by adding the following line just
above the </body> closing element:

<script src="@Url.Content("~/js/plugins/metisMenu/jquery.
metisMenu.js")"></script>

6. When running your project, the left-hand side menu should now
display correctly.

Adding different page views
The SB Admin template comes with a variety of different page styles, which can be
used to build our own views. We'll create a custom view that displays two panels,
one with a simple Bootstrap form and another one that displays an image, by
completing the following steps:

1. Add a new empty MVC 5 controller called FormsController to your project.
2. Add a new empty view for the Index method of the controller and select the

layout page we've created earlier as its layout page.

3. Open the Index.cshtml ile inside the Views\Forms folder.

4. Add the following markup to the view:

@{

 ViewBag.Title = "Index";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="row">

 <div class="col-lg-12">

 <h1 class="page-header">Forms</h1>

 </div>

</div>

<div class="row">

 <div class="col-lg-6">

 <div class="panel panel-primary">

 <div class="panel-heading">

 Firs Panel with simple form

 </div>

 <div class="panel-body">

 <div class="row">

 <div class="col-lg-6">

 <form role="form">

Chapter 7

[139]

 <div class="form-group">

 <label>Full name</label>

 <input class="form-control"
placeholder="Your full name">

 </div>

 <div class="form-group">

 <label>Bio</label>

 <textarea class="form-control"
rows="3"></textarea>

 </div>

 <div class="form-group">

 <label>Subject</label>

 <label class="checkbox-inline">

 <input type="checkbox">Math

 </label>

 <label class="checkbox-inline">

 <input type="checkbox">Science

 </label>

 <label class="checkbox-inline">

 <input type="checkbox">History

 </label>

 </div>

 <button type="submit" class="btn btn-
primary">Save</button>

 </form>

 </div>

 </div>

 </div>

 </div>

 </div>

 <div class="col-lg-6">

 <div class="panel panel-danger">

 <div class="panel-heading">

 Second Panel

 </div>

 <div class="panel-body">

 <div class="row">

 <div class="col-lg-6">

 <p>This is a second panel on the page</p>

 <img src="http://placehold.it/350x150"
alt="placeholder" />

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[140]

 </div>

 </div>

 </div>

 </div>

 </div>

</div>

5. The preceding code will render two panels, one blue and one red,
as illustrated in the following screenshot:

Finally, we need to change the left-hand side navigation menu to include a link to
the view we just added. To accomplish this, complete the following steps:

1. Open the _Layout.cshtml ile inside the Views\Shared folder.

2. Find the following line of code inside the ile:
<i class="fa fa-table fa-fw"></i> Tables

3. Replace the preceding line with the following:

<i class="fa fa-table
fa-fw"></i> Form

4. We used the @Url.Action helper to navigate the user to the Index action
of the forms' controller. When the user clicks on the Forms menu item,
they will be shown the form view we created earlier.

Chapter 7

[141]

Adding charts to your views
In the SB Admin template, the Dashboard page contains a variety of attractive
charts and graphs that you can use to display data in an interactive way to your
users. We'll add the Dashboard page and its functionality that is included in
the SB Admin template to our project by completing the following steps:

1. Create a new folder called morris inside the js\plugins folder.

2. Add the following two iles from the SB Admin source iles to the folder:
 ° raphael-2.1.0.min.js

 ° morris.js

3. Add the dashboard-demo.js ile to the js folder.

4. Add the morris-0.4.3.min.css ile to your project's css folder.

5. Next, open the _Layout.cshtml ile and add the following code to the
<head> element:

@RenderSection("styles",false)

6. By adding the preceding line, we can inject additional CSS styles into
the layout page per view.

7. Open the Index.cshtml ile inside the Views\Home folder.

8. Add the following code to the top of the ile, just below the
layout declaration:

@section styles{

 <link href="@Url.Content("~/css//morris-0.4.3.min.css")"
rel="stylesheet">

}

9. The preceding code will inject the styles for the morris chart component
into our view.

10. Add the following markup to the view:

<div class="row">

 <div class="col-lg-12">

 <h1 class="page-header">Dashboard</h1>

 </div>

</div>

<div class="row">

 <div class="col-lg-12">

 <div class="panel panel-default">

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[142]

 <div class="panel-heading">

 <i class="fa fa-bar-chart-o fa-fw"></i> Area Chart
Example

 <div class="pull-right">

 <div class="btn-group">

 <button type="button" class="btn btn-
default btn-xs dropdown-toggle" data-toggle="dropdown">

 Actions

 </button>

 <ul class="dropdown-menu pull-right"
 role="menu">

 Action

 Another action

 Something else
 here

 <li class="divider">

 Separated link

 </div>

 </div>

 </div>

 <div class="panel-body">

 <div id="morris-area-chart"></div>

 </div>

 </div>

 </div>

</div>

11. Next, add the following section declaration, which will inject the necessary
JavaScript iles for the charting components into the view, to the bottom of
the ile:
@section scripts{

 <script src="@Url.Content("~/js/plugins/morris/raphael-
2.1.0.min.js")"></script>

Chapter 7

[143]

 <script src="@Url.Content("~/js/plugins/morris/morris.js")"></
script>

 <script src="@Url.Content("~/js/dashboard-demo.js")"></script>

}

12. Finally, open the _Layout.cshtml ile and ind the following line:
<i class="fa fa-dashboard fa-fw"></i>
Dashboard

13. Change the identiied line to the following line:
<i class="fa fa-dashboard
fa-fw"></i> Dashboard

14. Save and close all iles and run your project.
15. You should see a chart rendered, similar to the following screenshot, when

you navigate to the Dashboard page.

Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project

[144]

Summary
In this chapter, you've learned how to convert a predesigned HTML template into a
usable ASP.NET MVC project. The techniques shown in this chapter can be applied
to virtually any HTML template, allowing you to build professionally-designed web
applications without having to design the layout yourself.

In the next chapter, we'll explore how to include and use the jQuery DataTables
plugin in your own ASP.NET MVC projects.

Using the jQuery DataTables

Plugin with Bootstrap
The jQuery DataTables plugin allows developers to add innovative interaction
controls to any HTML table.

The jQuery DataTables plugin supports a multitude of options and a rich range of
extensions. ASP.NET MVC developers are also able to include this plugin in their
own projects. The purpose of this chapter is not only to show you how to use the
DataTables plugin, but also to illustrate how you can use almost any open source
JavaScript and CSS plugin or framework with ASP.NET MVC.

In this chapter, we will cover the following topics:

• An overview of jQuery DataTables
• Including the jQuery DataTables plugin in your ASP.NET MVC project
• Loading and displaying data with jQuery DataTables and ASP.NET MVC
• Using some of the extensions

jQuery DataTables
DataTables is a free, open source plugin for the jQuery JavaScript library that is
designed and created by a company called SpryMedia Ltd. This plugin makes
adding features such as ordering, iltering, pagination, and searching to any
standard HTML table incredibly easy to implement.

Using the jQuery DataTables Plugin with Bootstrap

[146]

It also offers various extensions that enable Excel-like features, inline editing,
and ixed columns to name a few. The DataTables website offers well-documented
examples, a blog, and a forum, which you can ind at www.datatables.net.

The jQuery DataTables plugin can be added to your ASP.NET MVC project in one of
the two ways, the DataTables NuGet package or Content Delivery Network (CDN).

Adding DataTables to your ASP.NET

MVC project
To add the basic functionality for the DataTables plugin, the following two iles
are required:

• The irst is jquery.dataTables.css and it contains the default CSS styling
for the tables

• The second is jquery.dataTables.js and it contains the JavaScript logic
for rendering the DataTables plugin and adding the necessary functionality

Both these iles are available at the DataTables CDN at the following links:

• //cdn.datatables.net/1.10.0/css/jquery.dataTables.css

• //cdn.datatables.net/1.10.0/js/jquery.dataTables.js

Using the DataTables NuGet package
You can also add all the required CSS and JavaScript iles needed for jQuery
DataTables as well as all the CSS and JavaScript iles for the extensions using
NuGet. Complete the following steps to add jQuery DataTables when using NuGet:

1. In Visual Studio, open the Package Manager Console window by navigating
to Tools | Library Package Manager | Package Manager Console.

2. Inside the Package Manager Console window, type the following command:

Install-Package jquery.datatables

3. The NuGet package will add a DataTables-1.10.0 folder inside the
Content folder, which contains the css, images, and swf iles required
for the DataTables plugin.

4. It will also add a DataTables-1.10.0 folder to the Scripts folder in your
project. This folder will contain JavaScript iles for the DataTables plugin
as well as JavaScript iles for all the extensions.

www.datatables.net
//cdn.datatables.net/1.10.0/css/jquery.dataTables.css
//cdn.datatables.net/1.10.0/js/jquery.dataTables.js

Chapter 8

[147]

Using the CDN
You can either save the iles from the aforementioned locations or add them to
your project or rather add a reference to the iles hosted on the CDN, which is
the preferred approach. This will help in increasing your site's performance.
To reference it from the CDN, complete the following steps:

1. In Visual Studio, open this book's accompanying sample project and open the
_Layout.cshtml ile located inside the Views\Shared folder.

2. Inside the <head> element of the _Layout.cshtml ile, add a reference to the
jQuery DataTables style sheet by inserting the following line of markup:
<link rel="stylesheet" type="text/css" href="//cdn.datatables.
net/1.10.0/css/jquery.dataTables.css">

3. Open the view in which you'll need the DataTables functionality and add
a reference to the JavaScript library by adding the following code to the
bottom of the view:

@section scripts{

 <script type="text/javascript" language="javascript" src="//
cdn.datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>

}

Adding Bootstrap styling to DataTables
The steps mentioned in the preceding section will add the minimum required iles
to the view and layout ile in order to generate the basic styling and functionality for
jQuery DataTables. However, the default DataTables CSS styles can look somewhat
out of place inside a Bootstrap website.

Luckily, the team behind the DataTables project created a Bootstrap-speciic CSS
style and JavaScript library to match the look and feel of your site. Both these iles
are also available on the DataTables CDN:

• //cdn.datatables.net/plug-ins/be7019ee387/integration/

bootstrap/3/dataTables.bootstrap.css

• //cdn.datatables.net/plug-ins/be7019ee387/integration/

bootstrap/3/dataTables.bootstrap.js

//cdn.datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/dataTables.bootstrap.css
//cdn.datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/dataTables.bootstrap.css
//cdn.datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/dataTables.bootstrap.js
//cdn.datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/dataTables.bootstrap.js

Using the jQuery DataTables Plugin with Bootstrap

[148]

These two iles are added in the same way as the normal DataTables CSS and
JavaScript iles. Bear in mind that when including the Bootstrap-speciic DataTables
JavaScript ile in your view, you need to include a reference to both the default
DataTables JavaScript iles as well as the Bootstrap-speciic ile, as illustrated in the
following markup:

<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/
dataTables.bootstrap.js"></script>

Loading and displaying data in jQuery
DataTables
In order to implement the jQuery DataTables plugin, we irst need to create a new
view that will list data inside an HTML table. For this example, we'll create a view
that lists customers from the Northwind Traders database. For this, complete the
following steps:

1. In Visual Studio, add a new controller class called CustomersController.cs.

2. We've implemented a dependency injection in our project, so we'll add
a constructor to the class that will automatically set the reference to the
database context with the following code:

public CustomersController(ApplicationDbContext context)

{

 _context = context;

}

3. The _context object is a local ield declared inside the class as follows:
private readonly ApplicationDbContext _context;

4. Add a new method called Index to the controller. This method returns an
ActionResult object to the controller. Add the following code to it that will
pass a list of customer objects to the view:
public ActionResult Index()

{

 var model = _context.Customers;

 return View(model);

}

Chapter 8

[149]

5. Right-click inside the Index method and select Add View… from the
context-menu.

6. In the Add View dialog window, change the Template combobox value to
List and select the Customer object as Model class. Click on Add, as shown
in the following screenshot:

7. Visual Studio will scaffold the default list view for the Customer object.
We won't need all the columns for the view, and we'll add a page header
and the breadcrumb component to the top of the page. The inal markup
for the view should look like the following code:

@model IEnumerable<Northwind.Data.Models.Customer>

@{

 ViewBag.Title = "Customers";

 Layout = "~/Views/Shared/_Layout.cshtml";

}

<div class="container">

 <div class="page-header">

Using the jQuery DataTables Plugin with Bootstrap

[150]

 <h1>Customers <small>Our Customers</small></h1>
 </div>

 <ol class="breadcrumb">
 @Html.ActionLink("Home", "Index", "Home")
 <li class="active">Customers

 <table class="table table table-striped table-hover">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.
 CustomerCode)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.
 CompanyName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.
 ContactName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.City)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Country)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Phone)
 </th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.ActionLink(item.CustomerCode,
 "Edit", new { id = item.CustomerId })
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.
 CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.
 ContactName)
 </td>
 <td>.

Chapter 8

[151]

 @Html.DisplayFor(modelItem => item.City)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.
 Country)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Phone)
 </td>
 </tr>
 }
 </tbody>
 </table>
</div>

In this markup, we've applied the table-striped and table-hover styles
to the table. You'll also notice that we've wrapped the column header names
inside a <thead> element and the table rows inside a <tbody> element.

The HTML markup for the view is ready. Complete the following steps to enable the
jQuery DataTable functionality for the table:

1. Open the _Layout.cshtml ile in the Views\Shared folder.

2. Add references to the jQuery DataTables base and Bootstrap-speciic style
sheets by adding the following markup inside the <head> element:

<link rel="stylesheet" type="text/css" href="//cdn.datatables.net/
plug-ins/be7019ee387/integration/bootstrap/3/dataTables.bootstrap.
css">

<link rel="stylesheet" type="text/css" href="//cdn.datatables.
net/1.10.0/css/jquery.dataTables.css">

3. Scroll to the bottom of the _Layout.cshtml ile and make sure that you have
a section declaration for a section called scripts:

@RenderSection("scripts", required: false)

4. Open the Index.cshtml ile in the Views\Customers folder. Add the
following code to the bottom of the ile:
@section scripts{

 <script type="text/javascript" language="javascript" src="//
cdn.datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>

 <script type="text/javascript" language="javascript" src="//
cdn.datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/
dataTables.bootstrap.js"></script>

 <script type="text/javascript">

 $(document).ready(function () {

Using the jQuery DataTables Plugin with Bootstrap

[152]

 $('.table').dataTable();

 });

 </script>

}

5. In the preceding step, we've added the required references to the DataTables
style sheets as well as the JavaScript iles. We created a jQuery event handler,
which will enable the DataTable functionality on all HTML elements with a
class name of table as soon as the page loads.

When you run your project and navigate to the customers view, you'll
see that the list of customers are automatically paginated into groups of
ten, and you are able to search and sort the data inside the table, as shown
in the following screenshot. The default Bootstrap styles for tables are also
correctly applied:

Chapter 8

[153]

DataTables extensions
The jQuery DataTables plugin provides a wide variety of extensions, which can
enhance the functionality of the plugin dramatically.

The ColReorder extension
The ColReorder extension allows users to reorder table columns by
clicking-and-dragging the column header to the location they prefer. To enable
column reordering for your DataTables HTML table, complete the following steps:

1. Open the _Layout.cshtml ile and add a reference to the dataTables.
colReorder.css ile:
<link rel="stylesheet" type="text/css" href="//cdn.datatables.net/
colreorder/1.1.1/css/dataTables.colReorder.css">

2. Open the view .cshtml ile and add a reference to the DataTables,
DataTables Bootstrap, and ColReorder extension JavaScript iles:
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>

<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/
dataTables.bootstrap.js"></script>

<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/colreorder/1.1.1/js/dataTables.colReorder.min.
js"></script>

3. Lastly, using jQuery, add an event handler to initialize the DataTables
plugin and the ColReorder extension after the page has loaded:

<script type="text/javascript">

 $(document).ready(function () {

 $('.table').DataTable({

 "dom": 'Rlfrtip'

 });

 });

</script>

Using the jQuery DataTables Plugin with Bootstrap

[154]

4. When navigating to the page, you should now be able to drag and reorder
the columns in the table. A blue line will be shown when dragging a column,
as illustrated in the following screenshot:

Notice that we're referencing all the style sheets and JavaScript
iles for the extensions from the DataTables CDN that are
available at cdn.datatables.net.

The ColVis extension
The ColVis extension adds a button to the top of DataTable, which when clicked on,
displays a list of column names in the table with a checkbox next to it. The user can
then deselect the column names they do not wish to see in the grid.

To enable the column visibility extension, perform the following steps:

1. Open the _Layout.cshtml ile and add a reference to the
dataTables.colVis.css ile:
<link rel="stylesheet" type="text/css" href="//cdn.datatables.net/
colvis/1.1.0/css/dataTables.colVis.css">

cdn.datatables.net

Chapter 8

[155]

2. Open the view .cshtml ile and add a reference to the DataTables,
DataTables Bootstrap, and ColVis extension JavaScript iles:
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/
dataTables.bootstrap.js"></script>
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/colvis/1.1.0/js/dataTables.colVis.min.js"></script>

3. Lastly, using jQuery, add an event handler to initialize the DataTables plugin
and the ColVis extension after the page has loaded:

<script type="text/javascript">
 $(document).ready(function () {
 $('.table').DataTable({
 "dom": 'C<"clear">lfrtip'
 });
 });
</script>

4. On navigating to the Customers page, you should see a button next to
the search box with which you can show or hide columns in the table,
as shown in the following screenshot:

Using the jQuery DataTables Plugin with Bootstrap

[156]

The TableTools extension
The TableTools extension for jQuery DataTables adds a toolbar at the top of the table
with which the user can copy to clipboard, export to CSV, and print to PDF the data
inside the DataTable. It is a really simple way to give your users the functionality to
export their data.

To use the TableTools extension, perform the following steps:

1. Create a new folder in the root of your project called swf.

2. Add the copy_csv_xls_pdf.swf ile to the swf folder. The .swf ile is
included in the DataTables plugin download.

3. Open the _Layout.cshtml ile and add a reference to the dataTables.
tableTools.css ile:
<link rel="stylesheet" type="text/css" href="//cdn.datatables.net/
tabletools/2.2.1/css/dataTables.tableTools.css">

4. Open the view .cshtml ile and add a reference to the DataTables,
DataTables Bootstrap, and TableTools extension JavaScript iles:
<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/1.10.0/js/jquery.dataTables.min.js"></script>

<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/tabletools/2.2.1/js/dataTables.tableTools.min.
js"></script>

<script type="text/javascript" language="javascript" src="//cdn.
datatables.net/plug-ins/be7019ee387/integration/bootstrap/3/
dataTables.bootstrap.js"></script>

5. Lastly, using jQuery, add an event handler to initialize the DataTables plugin
and the TableTools extension after the page has loaded:

<script type="text/javascript">

 $(document).ready(function () {

 var table = $('.table').dataTable();

 var tt = new $.fn.dataTable.TableTools(table);
$(tt.fnContainer()).insertBefore('div.dataTables_wrapper');

 });

</script>

Chapter 8

[157]

6. The preceding highlighted code is used to initialize the TableTools extension
and to apply Bootstrap styling to the TableTools toolbar buttons. When
opening the view with DataTable, you should see a TableTools button
toolbar above the DataTable, as shown in the following screenshot:

Using the jQuery DataTables Plugin with Bootstrap

[158]

Summary
In this chapter, we've implemented a sortable, searchable, and extensible HTML
table using the jQuery DataTables plugin. We also explored how to specify that the
plugin should use the default Bootstrap styles. This chapter should also have given
you the conidence to explore other open source plugins and incorporate them in
your own ASP.NET MVC projects.

In the next and inal chapter, we'll take a look at the TwitterBootstrapMVC library
and how to use it in your own project.

Making Things Easier with

the TwitterBootstrapMVC

Library
The TwitterBootstrapMVC library is a luent implementation of the ASP.NET MVC
helpers for Bootstrap. The purpose of this library is to help the ASP.NET MVC
developers write any Bootstrap-related HTML markup faster.

We'll explore this library and see how you can include it in your own ASP.NET MVC
projects, and how it can help to increase your productivity.

In this chapter, we will cover the following topics:

• What is the TwitterBootstrapMVC library and why does it matter

• How to include TwitterBootstrapMVC in your project, either through
DLL or NuGet

• How to use the TwitterBootstrapMVC helpers

The TwitterBootstrapMVC library
The TwitterBootstrapMVC library started out as an open source project created by
Dmitry Eimenko. The project's goal was to assist developers in creating ASP.NET
MVC sites using Bootstrap, by allowing them to use Bootstrap components with
fewer lines of code. It can be very time consuming, if you are unfamiliar with the
Bootstrap class names, to go through the online documentation on the Bootstrap site.
The aim of TwitterBootstrapMVC is therefore to simplify website development.

Making Things Easier with the TwitterBootstrapMVC Library

[160]

The luent implementation also provides intelliSense inside Visual Studio, enabling
developers to easily discover the Bootstrap coniguration options. The library is no
longer open source or free, although you can still view the original project on
GitHub at https://github.com/DmitryEfimenko/TwitterBootstrapMvc.

The commercialized version of the library is available at
https://www.twitterbootstrapmvc.com/.

Including TwitterBootstrapMVC in
your project
You can include the TwitterBootstrapMVC library in your project in one of the
two ways. The irst and preferred option is to use the NuGet package, and the
second option is to download and manually add a reference to the .dll ile.

Adding TwitterBootstrapMVC using NuGet
To include the TwitterBootstrapMVC library in your project using NuGet, perform
the following steps:

1. In Visual Studio, open the Package Manager Console window, via the
Tools | Library Package Manager | Package Manager Console menu.

2. Inside the Package Manager console window, type the following command
and hit Enter:

Install-Package TwitterBootstrapMVC5

3. Next, navigate to https://www.twitterbootstrapmvc.com/Download
and download a trial or purchase a personal or commercial license.

4. Download the license ile, it should be called
TwitterBootstrapMvcLicense.lic and add it to the root of your project
in Visual Studio.

5. Open the Web.config ile located inside the Views folder and add the
following code to the <namespaces> element:

<add namespace="TwitterBootstrapMVC" />

<add namespace="TwitterBootstrap3" />

6. Finally, open the Global.asax ile in the root of your project and add the
following line of code to the Application_Start method:

Bootstrap.Configure();

https://github.com/DmitryEfimenko/TwitterBootstrapMvc
https://www.twitterbootstrapmvc.com/Download

Chapter 9

[161]

Add TwitterBootstrapMVC using the .dll ile
You do not need to add the TwitterBootstrapMVC library via NuGet, you can also
add it using the .dll ile. To do this, complete the following steps:

1. Inside your browser, navigate to https://www.twitterbootstrapmvc.com/
Home/Installation and download the zip archive located under the
Option 2: Download a .dll heading.

2. After the zip ile has been downloaded, extract the iles to a folder on
a local drive.

3. Inside Visual Studio, right-click on the References node in the Solution
Explorer window and select Add Reference… from the context menu.

4. Browse to the folder where you've extracted the zip archive and select the
TwitterBootstrapMVC5.dll ile.

5. Next, navigate to https://www.twitterbootstrapmvc.com/Download
and download a trial or purchase a personal or commercial license.

6. Download the license ile, it should be called
TwitterBootstrapMvcLicense.lic and add it to the root of your project
in Visual Studio.

7. Open the Web.config ile located inside the Views folder and add the
following code to the <namespaces> element:

<add namespace="TwitterBootstrapMVC" />

<add namespace="TwitterBootstrap3" />

8. Finally, open the Global.asax ile in the root of your project and add the
following line of code to the Application_Start method:

Bootstrap.Configure();

Using the TwitterBootstrapMVC helpers
The TwitterBootstrapMVC library offers a wide range of Bootstrap helpers, all
of whom use a luent syntax to allow the chaining of methods. These helpers can
reduce the amount of HTML markup you need to create the Bootstrap components.
Method chaining in the library follows the following pattern:

@Html.Bootstrap().TextBoxFor(m => m.PostalCode).Value("1.23").
Size(InputSize.Large).Placeholder("Enter Postal Code").
Format("{0:0.00}").Prepend("US")

https://www.twitterbootstrapmvc.com/Home/Installation
https://www.twitterbootstrapmvc.com/Home/Installation
https://www.twitterbootstrapmvc.com/Download

Making Things Easier with the TwitterBootstrapMVC Library

[162]

Forms and inputs
TwitterBootstrapMVC offers luent helpers for most forms and input elements.

Inputs
TwitterBootstrapMVC supplies ASP.NET MVC helpers for all HTML input
elements; most of these components share the same chaining methods. These
methods are listed in the following table:

Method name Description

.Label() This prepends a label element to the element

.Tooltip() This adds a tooltip to the component with the
supplied message

.HelpText() This adds a helper text next to the element

.Id() This sets the id attribute of the element

.Class() This sets the class HTML attribute of
the element

.ReadOnly() This adds readonly="readonly" to
the element

.HtmlAttributes() This adds the specified HTML attribute(s)
to the element

.Data() This works in a similar fashion as the
.HtmlAttributes() method but prepends
data- to the attribute

.Disabled() This adds disabled="disabled" to
the element

.DisabledDependsOn() This disables an element that is conditionally
based on the value of another element

.VisibleDependsOn() This hides an element that is conditionally based
on the value of another element

.ShowValidationMessage() This sets whether the validation message should
be shown for an element in case its validation fails

Chapter 9

[163]

Forms
Using the following code, you can generate a simple vertical Bootstrap form
containing three textboxes and a submit button. The irst two textboxes also invoke
the PlaceHolder method that adds the placeholder text to the empty textboxes and
the last textbox has an additional method called HelpText that adds the helper text
to the bottom of the textbox.

@using (var form = Html.Bootstrap().Begin(new Form()))

{

 @form.FormGroup().TextBoxFor(m => m.CompanyName).
 Placeholder("Enter the company name.")

 @form.FormGroup().TextBoxFor(m => m.ContactName).
 Placeholder("Enter the name of contact person.")

 @form.FormGroup().TextBoxFor(m => m.Address).HelpText
 ("Short address for customer.")

 @Html.Bootstrap().SubmitButton()

}

The resulting form should look similar to the following screenshot in the browser:

You'll also notice that the FormGroup helper is smart enough to automatically add an
asterisk (*) to the ields' label, if the value is required.

Making Things Easier with the TwitterBootstrapMVC Library

[164]

To generate the same form as an inline or vertical form is as simple as invoking the
Type method on the Form object and specifying the layout as a parameter to the Type
method. The parameter is an enumeration (enum) value, which enables intelliSense
that lists all the available options:

@using (var form = Html.Bootstrap().Begin(new Form().Type(FormType.
Inline)))

{

 @form.FormGroup().TextBoxFor(m => m.CompanyName).
 Placeholder("Enter the company name.")

 @form.FormGroup().TextBoxFor(m => m.ContactName).
 Placeholder("Enter the name of contact person.")

 @form.FormGroup().TextBoxFor(m => m.Address)

 @Html.Bootstrap().SubmitButton()

}

The resulting form will appear similar to the following screenshot:

The Textbox helper offers the following extension methods to add additional
formatting or functionality to a textbox element:

Method name Description

.Value() This sets the value of the textbox.

.Size() This sets the size of the textbox. This also accepts the
Inputsize enum.

.Placeholder() This specifies the placeholder text of the textbox.

.Format() This is used to specify the data format of the textbox.

.Append() This appends the specified string to the end of the textbox.
This also creates an input group.

.AppendIcon() This appends an icon to the end of the textbox.

.Prepend() This is the opposite of the .Append() method. This adds the
specified string to the front of the textbox and also creates an
input group.

.PrependIcon() This adds the specified icon to the front of the textbox.

.TypeAhead() This enables the TypeAhead functionality for the textbox.

Chapter 9

[165]

In the following example, we'll create a textbox for the models' PostalCode
property, set its value element to 1.23, and its size to Large. We'll then
specify the placeholder text and the format, and inally, we add a string to
the front of the textbox:

@Html.Bootstrap().TextBoxFor(m => m.MinimumTransactionValue).
Value("1.23").Size(InputSize.Large).Placeholder("Enter Postal Code").
Format("{0:0.00}").Prepend("US")

The resulting textbox should look similar to the following screenshot in
your browser:

To create a text area input using the TwitterBootstrapMVC library, you can use
the TextAreaFor helper. This helper supports two additional methods with which
you can specify the number of columns and rows for the text area. In the following
example, we'll create a text area for the models' Address property and set its
columns value to 10 and its rows value to 5:

@Html.Bootstrap().TextAreaFor(m => m.Address).Columns(10).Rows(5)

The text areas should be rendered similar to the following screenshot in
your browser:

Making Things Easier with the TwitterBootstrapMVC Library

[166]

Buttons and links
The TwitterBootstrapMVC library provides luent helpers for Bootstrap buttons as
well as links. Both buttons and links helpers share the following extension methods:

Method name Description

.AppendIcon() This appends the specified icon to the button or link

.PrependIcon() This prepends the specified icon to the button or link

.Disabled() This adds the disabled class to the button or link

In the following code example, we'll create a simple submit button that has an icon
at the back and at the front of it. Note the use of the glyphicon class names in order
to specify which icons to use.

@Html.Bootstrap().Button().AppendIcon("glyphicon glyphicon-pencil").
PrependIcon("glyphicon glyphicon-music")

The preceding markup will render the following screenshot in your browser:

The ActionLinkButton, Button, and SubmitButton helpers share the following
extension methods:

Method name Description

.Text() This sets the caption/text of the button.

.Name() This specifies the HTML name attribute.

.Value() This sets the value HTML attribute.

.Size() This specifies the size of the button. This also accepts the
ButtonSize enum as a parameter.

.Style() This sets the style of the button. This also accepts the
ButtonStyle enum as a parameter.

.ButtonBlock() This expands the button to the full width of the container.

Chapter 9

[167]

Method name Description

.LoadingText() This sets the text that should be displayed after the button
was clicked.

.DropDownToggle() This applies the dropdown-toggle class name to
the button.

The following code generates a large, green Bootstrap button and sets its caption
using the TwitterBootstrapMVC luent helper syntax:

@Html.Bootstrap().Button().Text("Buy Now").Size(ButtonSize.Large).
Style(ButtonStyle.Success)

The button will resemble the following screenshot in your browser:

The ActionLinkButton and ActionLink helpers share the following
extension methods:

Method name Description

.Protocol() This specifies the URL's protocol, for
example, http or https

.HostName() This sets the hostname of the URL

.Fragment() This sets the anchor name of the URL

.RouteName() This specifies the route name

.RouteValues() This sets the route values

.Title() This sets the title HTML attribute

In the following code, we'll create an ActionLinkButton object. Note
how we combined the .Style and .PrependIcons methods with the
ActionLinkButton method:

@Html.Bootstrap().ActionLinkButton("Go to Buttons", "Buttons").
Protocol("http").Title("Buttons Link").Style(ButtonStyle.Link).
PrependIcon("glyphicon glyphicon-film")

Making Things Easier with the TwitterBootstrapMVC Library

[168]

The result will be a link with an icon rendered inside your browser, as shown in the
following screenshot:

Accordions and panels
Both the accordion and panel helpers, which TwitterBootstrapMVC provides,
should be used with the disposable Begin method.

The accordion method has another method called BeginPanel, which is used to
indicate a new panel inside the accordion component. The following code will
generate an accordion with two panels. Note that both panels are also disposable.

@using (var accordian = Html.Bootstrap().Begin(new Accordion("FAQ")))

{

 using (accordian.BeginPanel("Question 1"))

 {

 <p>tiam luctus nunc ipsum, sed facilisis velit.<p>

 }

 using (accordian.BeginPanel("Question 2"))

 {

 <p>Duis volutpat iaculis nisl, ut porttitor.<p>

 }

}

The accordion should look similar to the following screenshot in your browser:

The panel helper includes three child methods, BeginHeading, BeginBody, and
BeginFooter. These methods can also be invoked by using a shorthand notation
by invoking either the Heading, Body, or Footer methods.

Chapter 9

[169]

Using the following code, we'll generate a panel with a heading and footer.
We'll also specify the style of the panel by calling the shared Style method
on the Panel object.

@using (var panel = Html.Bootstrap().Begin(new Panel().
Style(PanelStyle.Danger)))

{

 @panel.Heading("Panel Heading")

 using (panel.BeginBody())

 {

 <p>Proin mattis lacus ac enim aliquam, eu malesuada
 tortor pretium.</p>

 }

 @panel.Footer("Panel Footer")

}

This code will render the following screenshot in your browser:

Tabs and modals
Fluent helpers are also available for the tab and modal components. A new tab
component should be created using the disposable Begin method. Each tab inside
the tab component must be declared using the Tab extension method and the
content of each tab should reside inside the BeginPanel method.

In the following example, we'll create a tab component with two tabs. Note the use
of the AppendBadge extension method on the Tab method.

@using (var tabs = Html.Bootstrap().Begin(new Tabs("TabComponent")))

{

 @tabs.Tab("Tab One")

Making Things Easier with the TwitterBootstrapMVC Library

[170]

 @tabs.Tab("Tab Two").AppendBadge("10")

 using (tabs.BeginPanel())

 {

 <p>Tab One content</p>

 }

 using (tabs.BeginPanel())

 {

 <p>Tab Two Content</p>

 }

}

This markup results in the following screenshot in your browser:

The Modal class has the following methods:

Method name Description

.Closeable() This adds a close button to the modal header

.BackdropOff() This will cause the modal to close only when its close
button is clicked

.FadeOff() This removes the fade effect

.KeyboardOff() This prevents the modal from being closed when the Esc
key is pressed

.Remote() This specifies that the modal content should be loaded via
Ajax from the specified path

.ShowOff() This prevents the modal from being shown when it
was initialized

Chapter 9

[171]

The following code will create a button that will show a modal with the ID that
was speciied as parameter to the TriggerModal method once it is clicked on.
The Modal object is declared using the disposable Begin method in conjunction
with the Modal class. The heading is created using the Header method and the
body content is contained inside the BeginBody method.

@Html.Bootstrap().Button().Text("Show Modal").TriggerModal("myModal")

@using (var modal = Html.Bootstrap().Begin(new Modal().Id("myModal")))

{

 @modal.Header("Modal Heading")

 using (modal.BeginBody())

 {

 <p>Aliquam porttitor faucibus lectus, quis hendrerit
 orci scelerisque sit amet. Cras est augue.</p>

 <p>Aliquam imperdiet nibh eget libero rutrum sodales. </p>

 }

 using (modal.BeginFooter())

 {

 @Html.Bootstrap().Button().Text("Close").Style
 (ButtonStyle.Info);

 }

}

The result should be a modal dialog with a blue info Bootstrap button as the modal
close button, as shown in the following screenshot:

Making Things Easier with the TwitterBootstrapMVC Library

[172]

Summary
In this chapter, you were introduced to the TwitterBootstrapMVC library and saw
how you can reduce the amount of markup of your views using this library. This is
also the last chapter of this book, and by now, you should be fairly comfortable with
using Bootstrap in your own ASP.NET MVC projects and even be ready to write
your own code-generation tools and helpers.

Make sure you download the sample project that accompanies this book from the
Packt Publishing website to see the examples mentioned in this book in action.

Thank you for reading. Until next time, keep coding!

Bootstrap Resources
The Bootstrap community is a vibrant and vast one. The following sections, in no
particular order, are a list of Bootstrap resources available on the Internet.

Themes
The URLs for downloading free and premium HTML themes based on Bootstrap
are listed in the following table:

URL Description

http://startbootstrap.com/ This URL provides free HTML starter
templates and themes for Bootstrap.

https://wrapbootstrap.com/ This is a marketplace for premium themes
and templates for Bootstrap.

http://bit.ly/ThemeForestHtml ThemeForest has over 5,000 premium
HTML templates. Many of them are
based on Bootstrap.

http://www.prepbootstrap.com/ This URL provides free Bootstrap themes,
templates, and other widgets with complete
code examples.

http://bootstrapzero.com/ This URL provides open source Bootstrap
themes and templates.

http://bootswatch.com/ This URL provides free themes for Bootstrap.

http://startbootstrap.com/
https://wrapbootstrap.com/
http://bit.ly/ThemeForestHtml
http://www.prepbootstrap.com/
http://bootstrapzero.com/
http://bootswatch.com/

Bootstrap Resources

[174]

Add-ons
The URLs for additional add-ons, plugins, and components for Bootstrap are listed
in the following table:

URL Description

http://bit.ly/FuelUX FuelUX provides additional controls
and enhancements for Bootstrap such
as date pickers, spinners, trees, and
form wizards.

http://bit.ly/JasnyBootstrap Jasny Bootstrap provides some
enhancements to existing components
such as label buttons and anchored alerts.

http://bit.ly/BootstrapNotify Bootstrap notify makes it easier to display
alert style notifications to your users.

http://bootstrapformhelpers.com/ Bootstrap Form Helpers is a plugin to
help enhance your forms. It includes
color pickers, sliders, and so on.

http://www.bootstrap-switch.org/ This add-on turn your checkboxes into
iOS-style switch controls.

http://bit.ly/BSAppWiz This add-on adds multistep, wizard-
like interfaces to your forms with the
Bootstrap Application Wizard.

http://tableclothjs.com/ This add-on makes your Bootstrap tables
sortable and searchable using jQuery.

http://bit.ly/TypeAhead This add-on provides a plugin by Twitter.
This also adds the autocomplete feature
to your forms.

Editors and generators
The URLs for tools to help you design and build your Bootstrap site are listed in
the following table:

URL Description

http://www.bootstrapbundle.com/ This URL provides an ASP.NET
MVC Bootstrap project and item
templates for Visual Studio 2013.

http://www.layoutit.com/ This URL provides the drag-and-
drop interface builder for Bootstrap.

http://bit.ly/FuelUX
http://bit.ly/JasnyBootstrap
http://bit.ly/BootstrapNotify
http://bootstrapformhelpers.com/
http://www.bootstrap-switch.org/
http://bit.ly/BSAppWiz
http://tableclothjs.com/
http://bit.ly/TypeAhead
http://www.bootstrapbundle.com/
http://www.layoutit.com/

Appendix

[175]

URL Description

https://www.easel.io/ This is similar to LayoutIt. It pro-
vides a visual drag-and-drop inter-
face to build your Bootstrap UI.

https://jetstrap.com/ This URL provides a visual interface
building tool for Bootstrap.

http://www.bootply.com/ This URL provides a visual editor
for rapidly building interfaces for
Bootstrap.

http://www.divshot.com/ This URL provides Bootstrap builder
and static web hosting tools.

http://bit.ly/BSMagic Bootstrap Magic easily creates your
own theme for Bootstrap.

http://paintstrap.com/ This URL provides a tool to
generate Bootstrap themes using
a COLOURlovers color scheme.

http://www.bootstrapdesigner.com/ This URL provides a tool to generate
websites or templates for Bootstrap.

https://www.easel.io/
https://jetstrap.com/
http://www.bootply.com/
http://www.divshot.com/
http://bit.ly/BSMagic
http://paintstrap.com/
http://www.bootstrapdesigner.com/

Index

Symbols

_BackendMenuPartial view 54
.dll ile

used, for adding TwitterBootstrapMVC
library 161

@helper syntax
using 94

@Html.BeginForm() helper 104

A

accordion and panel helper 168
accordion component

about 88
using 88-90

accordion method 168
Add method 25
add-ons

URLs 174
alert component

about 67, 68
dismissible alert 68

animated progress bars 71
ASP.NET layout

bundles, adding 25, 26
ASP.NET MVC

about 93
built-in HTML helpers 93
DataTables, adding 146
project creating 132, 133

ASP.NET MVC site
Bootstrap fonts, adding 16
Bootstrap JavaScript iles, adding 16
Bootstrap style sheets, adding 15
creating 14, 15

B
badges component 57
basic progress bar 69, 70
Bootstrap

URL 8, 130
using, with standard Visual Studio

project template 10, 11
BootstrapButton method 99
Bootstrap buttons

about 39, 40
btn btn-default btn-lg class 40
btn btn-default btn-sm class 39
btn btn-default btn-xs class 39
btn btn-default class 40

Bootstrap components
about 53
alert 67
badges 57
breadcrumb 60
button dropdowns 66
input groups 64, 65
list groups 56
media object 57-59
navigation bar 53-55
page headers 59
pagination 60-63
progress bars 69

Bootstrap distribution
about 8
Bootstrap folder structure 9
Bootstrap fonts 8
Bootstrap JavaScript iles 9
Bootstrap style sheets 8

Bootstrap iles
adding, NuGet used 21

[178]

Bootstrap folder structure 9
Bootstrap fonts

about 8
adding, to ASP.NET MVC site 16
formats 8

Bootstrap forms
about 41
horizontal forms 41, 42
inline forms 43
vertical/basic forms 42, 43

Bootstrap grid system
about 30
grid classes 30
grid options 30, 31

Bootstrap HTML elements
about 31
buttons 39
forms 41
images 50
tables 32

Bootstrap image classes
about 50, 51
img-circle 50
img-responsive 50
img-rounded 50
img-thumbnail 50

Bootstrap JavaScript iles
about 9
adding, to ASP.NET MVC site 16

Bootstrap navigation bar
about 53-55
ixed-top navigation bar 54

Bootstrap NuGet package
adding, dialog used 21, 22
adding, Package Manager

Console used 22, 23
Bootstrap plugins

URL 76
Bootstrap project

bundling, adding 24, 25
Bootstrap resources

add-ons 174
editors and generators 174
themes 173

Bootstrap styles
URL 41

Bootstrap style sheets
about 8
adding, to ASP.NET MVC site 15

Bootstrap styling
adding, to DataTables 147

Bootstrap tables
about 32
contextual table classes 37, 38
default styling 32, 33
styling 36
view, generating 33-36

Bootstrap-themed view
used, for creating home controller 19, 20

Bootstrap validation styles 44-46
breadcrumb 60
built-in HTML helpers

TextBox helper 94
bundles

adding, to ASP.NET layout 25, 26
bundling

adding, to Bootstrap project 24, 25
bundling and miniication

about 23
testing 26, 27

button dropdowns
about 66
creating 66

Button method 97
buttons and links helpers

.AppendIcon() method 166

.ButtonBlock() method 166

.Disabled() method 166

.DropDownToggle() method 167

.Fragment() method 167

.HostName() method 167

.LoadingText() method 167

.Name() method 166

.PrependIcon() method 166

.Protocol() method 167

.RouteName() method 167

.RouteValues() method 167

.Size() method 166

.Style() method 166

.Text() method 166

.Title() method 167

.Value() method 166

[179]

C

carousel component
about 90
using 90, 91

CDN
using 147

charts
adding, to views 141, 142

ColReorder extension
about 153, 154
using 153

ColVis extension
about 154
using 154

Content Delivery Network
(CDN) 18, 135, 146

Content folder, default MVC
project layout 13

contextual progress bars
about 70
class name, setting 70

custom helper
creating 94, 95
using, in view 95

custom scaffolder extension
creating 118-127

D

data attributes
versus, programmatic API 76

data-content attribute 87
data-original-title attribute 87

DataTables. See jQuery DataTables
DataTables CDN

reference links 146
URL 154

DataTables NuGet package
using 146

data-toggle attribute 87
data-trigger attribute 87
default MVC project layout

about 12
Content folder 13
fonts folder 13
Scripts folder 14

Devart T4 editor, for Visual Studio
URL 109

dialog
used, for adding Bootstrap NuGet

package 21, 22
dismissible alert 68
dropdowns

cascading 77-80

E

editor templates
about 47
creating, for nonprimitive types 48, 49
creating, for primitive types 47, 48

EOT font format 8
extension method helper

using, in view 99
extension methods

about 98
URL 98
used, for creating helpers 98, 99

F

luent HTML helpers
creating 99-103
using, in view 103

luent interfaces
about 99
URL 99

Font Awesome 8
fonts folder, default MVC project layout 13

forms. See Bootstrap forms

G

generated code, for controllers
customizing 110-113

generated code, for views
customizing 114-117

Glyphicon Hallings icons
URL 64

grid classes
col-lg-* 30
col-md-* 30
col-sm-* 30
col-xs-* 30

[180]

H
helpers

creating, extension methods used 98
creating, static methods used 96, 97

home controller
creating, with Bootstrap-themed

view 19, 20
view, creating 135, 136

horizontal forms 41, 42
HtmlHelper method 93
HTML helpers 93

I

inline forms 43
input element

.Class() method 162

.Data() method 162

.DisabledDependsOn() method 162

.Disabled() method 162

.HelpText() method 162

.HtmlAttributes() method 162

.Id() method 162

.Label() method 162

.ReadOnly() method 162

.ShowValidationMessage() method 162

.Tooltip() method 162

.VisibleDependsOn() method 162
input groups

about 64, 65
text input element, creating 64

J
jQuery DataTables

about 145
adding, to ASP.NET MVC project 146
data, displaying 148-152
data, loading 148
URL 146

jQuery DataTables, adding to
ASP.NET MVC project

Bootstrap styling, adding 147, 148
CDN, using 147
DataTables NuGet package, using 146

jQuery DataTables extensions
about 153
ColReorder extension 153
ColVis extension 154
TableTools extension 156

jQuery validation plugin
URL 46

L

list groups component 56

M

master layout
creating 133-135

media-object class name 59
media object component 57-59
menu plugin library

adding 137, 138
Microsoft.AspNet.Web.Optimization

NuGet package
installing 24

Modal class
.BackdropOff() method 170
.Closeable() method 170
.FadeOff() method 170
.KeyboardOff() method 170
.Remote() method 170
.ShowOff() method 170

modal dialogs
using 80-82

MvcHtmlString object 97

N

nonprimitive types
editor templates, creating for 48, 49

Northwind database 57
NuGet

about 21
URL 21
used, for adding Bootstrap 21
used, for adding TwitterBootstrapMVC

library 160

[181]

P

Package Manager Console
used, for adding Bootstrap

NuGet package 22, 23
PagedList library 62
PagedList.Mvc NuGet package 61
PagedListPager HTML helper

about 62
pagination layouts 62

page header 59
page views

adding 138, 140
pagination 60-63
panel helper

about 168
BeginBody method 168
BeginFooter method 168
BeginHeading method 168

popovers
about 87
using 87

prebuilt HTML templates
working with 130, 131

primitive types
editor templates, creating for 47, 48

progress bars
animated progress bars 71
basic progress bar 69, 70
contextual progress bars 70
striped progress bars 71
updating dynamically 71-73

S

scaffolding 107
ScriptBundle object 25
Scripts folder, default MVC project

layout 14
SearchProductsResult view 56
self-closing helpers

about 104
creating 104, 105
using, in view 105

SideWafle
about 109
URL 109

SignalR
about 72
URL 72

site Layout ile
creating 17, 18

site performance
improving, with bundling and

miniication 23
standard HTML helpers, ASP.NET MVC

URL 94
static method helper

using, in view 98
static methods

creating 96
used, for creating helpers 96, 97

striped progress bars 71
StyleBundle object 25

T

T4 code generator 108
T4 syntax 109, 110
T4 templates

about 108
URL 109

T4 tools 109
TableTools extension

about 156
using 156

tabs
about 83
using 83, 84

textbox element
.AppendIcon() method 164
.Append() method 164
.Format() method 164
.Placeholder() method 164
.PrependIcon() method 164
.Prepend() method 164
.Size() method 164
.TypeAhead() method 164
.Value() method 164

TextBox helper 94, 164
ThemeForest

URL 130

[182]

themes
URLs, for downloading 173

ToBootstrapSize method 97
tools, for design

URLs 174, 175
tooltips

about 85
using 85, 86

TTF 8
TwitterBootstrapMVC helpers

accordion and panel helpers 168
buttons and links helpers 166, 167
forms element 163-165
inputs element 162
tab and modal components 169
using 161

TwitterBootstrapMVC library
about 159
adding 160
adding, .dll ile used 161
adding, NuGet used 160
helpers 161
reference links 160
URL, for commercialized version 160

V

vertical/basic forms 42, 43
view

creating, for home controller 135, 136
custom helper, using in 95
extension method helper, using in 99
luent HTML helper, using in 103
self-closing helper, using in 105
static method helper, using in 98

Thank you for buying
Bootstrap for ASP.NET MVC

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Bootstrap Site Blueprints
ISBN: 978-1-78216-452-4 Paperback: 304 pages

Design mobile-irst responsive websites
with Bootstrap 3

1. Learn the inner working of Bootstrap 3
and create web applications with ease.

2. Quickly customize your designs working
directly with Bootstrap's LESS iles.

3. Leverage Bootstrap's excellent
JavaScript plugins.

Extending Bootstrap
ISBN: 978-1-78216-841-6 Paperback: 88 pages

Understand Bootstrap and unlock its secrets to build
a truly customized project!

1. Learn to use themes to improve your
user experience.

2. Improve your worklow with LESS
and Grunt.js.

3. Get to know the most useful third- party
Bootstrap plugins.

Please check www.PacktPub.com for information on our titles

Mobile First Bootstrap
ISBN: 978-1-78328-579-2 Paperback: 92 pages

Develop advanced websites optimized for mobile
devices using the Mobile First feature of Bootstrap

1. Get to grips with the essentials of mobile-irst
development with Bootstrap.

2. Understand the entire process of building a
mobile-irst website with Bootstrap from scratch.

3. Packed with screenshots that help guide you
through how to build an appealing website
from a mobile-irst perspective with the help
of a real-world example.

ASP.NET Web API

Build RESTful web applications and
services on the .NET framework

ISBN: 978-1-84968-974-8 Paperback: 224 pages

Master ASP.NET Web API using .NET Framework
4.5 and Visual Studio 2013

1. Clear and concise guide to the ASP.NET Web
API with plentiful code examples.

2. Learn about the advanced concepts of the
WCF-windows communication foundation.

3. Explore ways to consume Web API services
using ASP.NET, ASP.NET MVC, WPF, and
Silverlight clients.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with ASP.NET MVC and Bootstrap
	The Bootstrap distribution
	Bootstrap style sheets (the css folder)
	Bootstrap fonts (the fonts folder)
	Bootstrap JavaScript files (the js folder)
	The Bootstrap folder structure

	Using Bootstrap with a site created with the standard Visual Studio project template
	Examining the default MVC project layout
	The Content folder
	The fonts folder
	The Scripts folder

	Creating an empty ASP.NET MVC site and adding Bootstrap manually
	Adding the Bootstrap style sheets
	Adding the Bootstrap fonts
	Adding the Bootstrap JavaScript files

	Creating the site Layout file
	Creating a home controller with a Bootstrap-themed view
	Adding Bootstrap files using NuGet
	Adding the Bootstrap NuGet package using the dialog
	Adding the Bootstrap NuGet package using the Package Manager Console

	Improving your site performance with bundling and minification
	Adding bundling to your Bootstrap project
	Including bundles in your ASP.NET layout
	Testing bundling and minification

	Summary

	Chapter 2: Using Bootstrap CSS and HTML Elements
	The Bootstrap grid system
	Bootstrap grid options

	Bootstrap HTML elements
	Bootstrap tables
	Styling Bootstrap tables
	Bootstrap contextual table classes

	Bootstrap buttons

	Form layout and elements
	Horizontal forms
	Vertical/Basic forms
	Inline forms

	Bootstrap validation styles
	Creating editor templates for primitive types
	Creating editor templates for nonprimitive types

	Bootstrap image classes
	Summary

	Chapter 3: Using Bootstrap Components
	The Bootstrap navigation bar
	List groups
	Badges
	The media object
	Page headers
	Breadcrumb
	Pagination
	Input groups
	Button dropdowns
	Alerts
	Progress bars
	The basic progress bar
	Contextual progress bars
	Striped and animated progress bars
	Dynamically updating the progress bar's percentage

	Summary

	Chapter 4: Using Bootstrap JavaScript Plugins
	Data attributes versus the programmatic API
	Cascading dropdowns
	Modal dialogs
	Tabs
	Tooltips
	Popovers
	The accordion component
	The carousel component
	Summary

	Chapter 5: Creating ASP.NET MVC Bootstrap Helpers
	Built-in HTML helpers
	Creating a custom helper
	Using a helper in a view

	Creating helpers using static methods
	Using the static method helper in a view

	Creating helpers using extension methods
	Using the extension method helper in a view

	Creating fluent HTML helpers
	Using the fluent HTML helper in a view

	Creating self-closing helpers
	Using the self-closing helper in a view

	Summary

	Chapter 6: Creating T4 Templates to Scaffold Bootstrap Views
	An overview of scaffolding
	T4 templates
	T4 tools
	The T4 syntax

	Customizing the generated code for controllers
	Customizing the generated code for views
	Creating a custom scaffolder extension
	Summary

	Chapter 7: Converting a Bootstrap HTML Template into a Usable ASP.NET MVC Project
	Working with prebuilt HTML templates
	Creating the ASP.NET MVC project
	Creating the master layout
	Adding a view for the home controller
	Adding the menu plugin library
	Adding different page views
	Adding charts to your views
	Summary

	Chapter 8: Using the jQuery DataTables Plugin with Bootstrap
	jQuery DataTables
	Adding DataTables to your ASP.NET MVC project
	Using the DataTables NuGet package
	Using the CDN
	Adding Bootstrap styling to DataTables

	Loading and displaying data in jQuery DataTables
	DataTables extensions
	The ColReorder extension
	The ColVis extension
	The TableTools extension

	Summary

	Chapter 9: Making Things Easier with the TwitterBootstrapMVC Library
	The TwitterBootstrapMVC library
	Including TwitterBootstrapMVC in your project
	Adding TwitterBootstrapMVC using NuGet
	Add TwitterBootstrapMVC using the .dll file

	Using the TwitterBootstrapMVC helpers
	Forms and inputs
	Inputs
	Forms

	Buttons and links
	Accordions and panels
	Tabs and modals

	Summary

	Appendix: Bootstrap Resources
	Themes
	Add-ons
	Editors and generators

	Index

